NUMERICAL SIMULATION OF MECHANICAL BEHAVIOR OF WOVEN COMPOSITE AT DIFFERENT STRAIN RATE BY A COLLABORATIVE ELASTO-PLASTO-DAMAGE MODEL WITH FRACTIONAL DERIVATIVES

Author(s):  
Alina Krasnobrizha ◽  
Patrick Rozycki ◽  
Laurent Gornet ◽  
Pascal Cosson
2020 ◽  
Author(s):  
Chuang Liu ◽  
Dongzhi Sun ◽  
Xianfeng Zhang ◽  
Florence Andrieux ◽  
Tobias Gerster

Abstract Cast iron alloys with low production cost and quite good mechanical properties are widely used in the automotive industry. To study the mechanical behavior of a typical ductile cast iron (GJS-450) with nodular graphite, uni-axial quasi-static and dynamic tensile tests at strain rates of 10− 4, 1, 10, 100, and 250 s− 1 were carried out. In order to investigate the effects of stress state, specimens with various geometries were used in the experiments. Stress–strain curves and fracture strains of the GJS-450 alloy in the strain-rate range of 10− 4 to 250 s− 1 were obtained. A strain rate-dependent plastic flow law based on the Voce model is proposed to describe the mechanical behavior in the corresponding strain-rate range. The deformation behavior at various strain rates is observed and analyzed through simulations with the proposed strain rate-dependent constitutive model. The available damage model from Bai and Wierzbicki is extended to take the strain rate into account and calibrated based on the analysis of local fracture strains. The validity of the proposed constitutive model including the damage model was verified by the corresponding experimental results. The results show that the strain rate has obviously nonlinear effects on the yield stress and fracture strain of GJS-450 alloys. The predictions with the proposed constitutive model and damage models at various strain rates agree well with the experimental results, which illustrates that the rate-dependent flow rule and damage models can be used to describe the mechanical behavior of cast iron alloys at elevated strain rates.


2015 ◽  
Vol 2015.90 (0) ◽  
pp. 65-66
Author(s):  
Ryo NARUSE ◽  
Masaaki HASHIMOTO ◽  
Isamu RIKU ◽  
Kouji MIMURA

2010 ◽  
Vol 14 (6-7) ◽  
pp. 923-935
Author(s):  
Thomas Rougelot ◽  
Cheng Peng ◽  
Nicolas Burlion ◽  
Dominique Bernard

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 704
Author(s):  
Zahraa Kansoun ◽  
Hicham Chaouki ◽  
Donald Picard ◽  
Julien Lauzon-Gauthier ◽  
Houshang Alamdari ◽  
...  

Carbon-like materials such as the anode and the ramming paste play a crucial role in the efficiency of the Hall–Héroult process. The mechanical behavior of these materials during forming processes is complex and still ill-understood. This work aimed to investigate experimentally the mechanical behavior of a carbon paste used in the aluminum industry under different loading conditions. For this purpose, experiments consisting of (1) relaxation tests at different compaction levels, (2) quasi-static cyclic tests at several amplitudes, (3) monotonic compaction tests at varied strain rates, and (4) vibrocompaction tests at different frequencies were carried out. The obtained results highlight some fundamental aspects of the carbon paste behavior such as the strain rate’s effect on the paste compressibility, the hardening-softening behavior under cyclic loadings, the effect of cycling amplitude on the stress state and the paste densification, and the frequency effect on the vibrocompaction process. These results pave the way for the development of reliable rheological models for the modeling and the numerical simulation of carbon pastes forming processes.


2009 ◽  
Vol 65 ◽  
pp. 19-31
Author(s):  
Ruben Cuamatzi-Melendez ◽  
J.R. Yates

Little work has been published concerning the transferability of Gurson’s ductile damage model parameters in specimens tested at different strain rates and in the rolling direction of a Grade A ship plate steel. In order to investigate the transferability of the damage model parameters of Gurson’s model, tensile specimens with different constraint level and impact Charpy specimens were simulated to investigate the effect of the strain rate on the damage model parameters of Gurson model. The simulations were performed with the finite element program ABAQUS Explicit [1]. ABAQUS Explicit is ideally suited for the solution of complex nonlinear dynamic and quasi–static problems [2], especially those involving impact and other highly discontinuous events. ABAQUS Explicit supports not only stress–displacement analyses but also fully coupled transient dynamic temperature, displacement, acoustic and coupled acoustic–structural analyses. This makes the program very suitable for modelling fracture initiation and propagation. In ABAQUS Explicit, the element deletion technique is provided, so the damaged or dead elements are removed from the analysis once the failure criterion is locally reached. This simulates crack growth through the microstructure. It was found that the variation of the strain rate affects slightly the value of the damage model parameters of Gurson model.


Sign in / Sign up

Export Citation Format

Share Document