scholarly journals The main stage of recovery after the end-Permian mass extinction: taxonomic rediversification and ecologic reorganization of marine level-bottom communities during the Middle Triassic

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11654
Author(s):  
Evelyn Friesenbichler ◽  
Michael Hautmann ◽  
Hugo Bucher

The recovery of marine life from the end-Permian mass extinction event provides a test-case for biodiversification models in general, but few studies have addressed this episode in its full length and ecological context. This study analyses the recovery of marine level-bottom communities from the end-Permian mass extinction event over a period of 15 Ma, with a main focus on the previously neglected main phase during the Middle Triassic. Our analyses are based on faunas from 37 lithological units representing different environmental settings, ranging from lagoons to inner, mid- and outer ramps. Our dataset comprises 1562 species, which belong to 13 higher taxa and 12 ecological guilds. The diversification pattern of most taxa and guilds shows an initial Early Triassic lag phase that is followed by a hyperbolic diversity increase during the Bithynian (early middle Anisian) and became damped later in the Middle Triassic. The hyperbolic diversity increase is not predicted by models that suggest environmental causes for the initial lag phase. We therefore advocate a model in which diversification is primarily driven by the intensity of biotic interactions. Accordingly, the Early Triassic lag phase represents the time when the reduced species richness in the wake of the end-Permian mass extinction was insufficient for stimulating major diversifications, whereas the Anisian main diversification event started when self-accelerating processes became effective and stopped when niche-crowding prevented further diversification. Biotic interactions that might drive this pattern include interspecific competition but also habitat construction, ecosystem engineering and new options for trophic relationships. The latter factors are discussed in the context of the resurgence of large carbonate platforms, which occurred simultaneously with the diversification of benthic communities. These did not only provide new hardground habitats for a variety of epifaunal taxa, but also new options for grazing gastropods that supposedly fed from microalgae growing on dasycladaceans and other macroalgae. Whereas we do not claim that changing environmental conditions were generally unimportant for the recovery of marine level-bottom communities, we note that their actual role can only be assessed when tested against predictions of the biotic model.

2021 ◽  
Vol 8 ◽  
Author(s):  
Carlo Romano

About half of all vertebrate species today are ray-finned fishes (Actinopterygii), and nearly all of them belong to the Neopterygii (modern ray-fins). The oldest unequivocal neopterygian fossils are known from the Early Triassic. They appear during a time when global fish faunas consisted of mostly cosmopolitan taxa, and contemporary bony fishes belonged mainly to non-neopterygian (“paleopterygian”) lineages. In the Middle Triassic (Pelsonian substage and later), less than 10 myrs (million years) after the Permian-Triassic boundary mass extinction event (PTBME), neopterygians were already species-rich and trophically diverse, and bony fish faunas were more regionally differentiated compared to the Early Triassic. Still little is known about the early evolution of neopterygians leading up to this first diversity peak. A major factor limiting our understanding of this “Triassic revolution” is an interval marked by a very poor fossil record, overlapping with the Spathian (late Olenekian, Early Triassic), Aegean (Early Anisian, Middle Triassic), and Bithynian (early Middle Anisian) substages. Here, I review the fossil record of Early and Middle Triassic marine bony fishes (Actinistia and Actinopterygii) at the substage-level in order to evaluate the impact of this hiatus–named herein the Spathian–Bithynian gap (SBG)–on our understanding of their diversification after the largest mass extinction event of the past. I propose three hypotheses: 1) the SSBE hypothesis, suggesting that most of the Middle Triassic diversity appeared in the aftermath of the Smithian-Spathian boundary extinction (SSBE; ∼2 myrs after the PTBME), 2) the Pelsonian explosion hypothesis, which states that most of the Middle Triassic ichthyodiversity is the result of a radiation event in the Pelsonian, and 3) the gradual replacement hypothesis, i.e. that the faunal turnover during the SBG was steady and bony fishes were not affected by extinction events subsequent to the PTBME. Based on current knowledge, hypothesis three is favored herein, but further studies are necessary to test alternative hypotheses. In light of the SBG, claims of a protracted diversification of bony fishes after the PTBME should be treated with caution.


2011 ◽  
Vol 59 (2) ◽  
pp. 156 ◽  
Author(s):  
Stephen McLoughlin

Single, midrib-positioned galls and midrib-flanking oviposition scars are described from four species of Permian glossopterid foliage from Australia and South Africa. Several of these traces have been mistaken previously for glossopterid reproductive organs or fructification detachment scars. A single Early Triassic corystosperm leaf from Australia is reported bearing multiple disc-like galls on both the midrib and pinnules. A Middle Triassic taeniopterid gymnosperm leaf from Australia is described hosting oviposition scars between consecutive secondary veins flanking the midrib. These fossils attest to a much richer record of plant–arthropod interactions in the late Palaeozoic and early Mesozoic of high-latitude Gondwana than previously reported, and indicate that herbivory and reproductive strategies involving galling and foliar ovipositioning were re-established relatively soon after the end-Permian mass extinction event that saw major turnovers in both the flora and insect fauna.


Paleobiology ◽  
2011 ◽  
Vol 37 (3) ◽  
pp. 409-425 ◽  
Author(s):  
Jonathan L. Payne ◽  
Mindi Summers ◽  
Brianna L. Rego ◽  
Demir Altiner ◽  
Jiayong Wei ◽  
...  

Delayed biotic recovery from the end-Permian mass extinction has long been interpreted to result from environmental inhibition. Recently, evidence of more rapid recovery has begun to emerge, suggesting the role of environmental inhibition was previously overestimated. However, there have been few high-resolution taxonomic and ecological studies spanning the full Early and Middle Triassic recovery interval, leaving the precise pattern of recovery and underlying mechanisms poorly constrained. In this study, we document Early and Middle Triassic trends in taxonomic diversity, assemblage evenness, and size distribution of benthic foraminifers on an exceptionally exposed carbonate platform in south China. We observe gradual increases in all metrics through Early Triassic and earliest Middle Triassic time, with stable values reached early in the Anisian. There is little support in our data set for a substantial Early Triassic lag interval during the recovery of foraminifers or for a stepwise recovery pattern. The recovery pattern of foraminifers on the GBG corresponds well with available global data for this taxon and appears to parallel that of many benthic invertebrate clades. Early Triassic diversity increase in foraminifers was more gradual than in ammonoids and conodonts. However, foraminifers continued to increase in diversity, size, and evenness into Middle Triassic time, whereas diversity of ammonoids and conodonts declined. These contrasts suggest decoupling of recovery between benthic and pelagic environments; it is unclear whether these discrepancies reflect inherent contrasts in their evolutionary dynamics or the differential impact of Early Triassic ocean anoxia or associated environmental parameters on benthic ecosystems.


PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0172321 ◽  
Author(s):  
William J. Foster ◽  
Silvia Danise ◽  
Gregory D. Price ◽  
Richard J. Twitchett

Geology ◽  
2004 ◽  
Vol 32 (9) ◽  
pp. 805 ◽  
Author(s):  
R.J. Twitchett ◽  
L. Krystyn ◽  
A. Baud ◽  
J.R. Wheeley ◽  
S. Richoz

Sign in / Sign up

Export Citation Format

Share Document