scholarly journals One-step multiplex real-time RT-PCR assay for detecting and genotyping wild-type group A rotavirus strains and vaccine strains (Rotarix® and RotaTeq®) in stool samples

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1560 ◽  
Author(s):  
Rashi Gautam ◽  
Slavica Mijatovic-Rustempasic ◽  
Mathew D. Esona ◽  
Ka Ian Tam ◽  
Osbourne Quaye ◽  
...  

Background.Group A rotavirus (RVA) infection is the major cause of acute gastroenteritis (AGE) in young children worldwide. Introduction of two live-attenuated rotavirus vaccines, RotaTeq® and Rotarix®, has dramatically reduced RVA associated AGE and mortality in developed as well as in many developing countries. High-throughput methods are needed to genotype rotavirus wild-type strains and to identify vaccine strains in stool samples. Quantitative RT-PCR assays (qRT-PCR) offer several advantages including increased sensitivity, higher throughput, and faster turnaround time.Methods.In this study, a one-step multiplex qRT-PCR assay was developed to detect and genotype wild-type strains and vaccine (Rotarix® and RotaTeq®) rotavirus strains along with an internal processing control (Xeno or MS2 RNA). Real-time RT-PCR assays were designed for VP7 (G1, G2, G3, G4, G9, G12) and VP4 (P[4], P[6] and P[8]) genotypes. The multiplex qRT-PCR assay also included previously published NSP3 qRT-PCR for rotavirus detection and Rotarix® NSP2 and RotaTeq® VP6 qRT-PCRs for detection of Rotarix® and RotaTeq® vaccine strains respectively. The multiplex qRT-PCR assay was validated using 853 sequence confirmed stool samples and 24 lab cultured strains of different rotavirus genotypes. By using thermostablerTthpolymerase enzyme, dsRNA denaturation, reverse transcription (RT) and amplification (PCR) steps were performed in single tube by uninterrupted thermocycling profile to reduce chances of sample cross contamination and for rapid generation of results. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments.Results.The VP7 qRT-PCRs exhibited 98.8–100% sensitivity, 99.7–100% specificity, 85–95% efficiency and a limit of detection of 4–60 copies per singleplex reaction. The VP7 qRT-PCRs exhibited 81–92% efficiency and limit of detection of 150–600 copies in multiplex reactions. The VP4 qRT-PCRs exhibited 98.8–100% sensitivity, 100% specificity, 86–89% efficiency and a limit of detection of 12–400 copies per singleplex reactions. The VP4 qRT-PCRs exhibited 82–90% efficiency and limit of detection of 120–4000 copies in multiplex reaction.Discussion.The one-step multiplex qRT-PCR assay will facilitate high-throughput rotavirus genotype characterization for monitoring circulating rotavirus wild-type strains causing rotavirus infections, determining the frequency of Rotarix® and RotaTeq® vaccine strains and vaccine-derived reassortants associated with AGE, and help to identify novel rotavirus strains derived by reassortment between vaccine and wild-type strains.

2013 ◽  
Vol 10 (3) ◽  
pp. 767-777 ◽  
Author(s):  
Rashi Gautam ◽  
Mathew D Esona ◽  
Slavica Mijatovic-Rustempasic ◽  
Ka Ian Tam ◽  
Jon R Gentsch ◽  
...  

2021 ◽  
Author(s):  
Zhilin Wang ◽  
Xuerui Li ◽  
Youjun Shang ◽  
Jinyan Wu ◽  
Zhen Dong ◽  
...  

Abstract BackgroundPorcine epidemic diarrhea virus (PEDV) is a pathogen causing serious disease and resulting in severe economic losses in the swine industry. In recent years, although China has adopted a large-scale vaccine immunization strategy, many types of PEDV strains, including classical attenuated vaccine strains, have been discovered in the immunized pig herds. Therefore, monitoring the prevalence of different types of PEDV strains is particularly important for the production of pigs and the safety evaluation of related attenuated vaccines MethodsIn the study, a one-step real-time fluorescent reverse transcription PCR (one-step real-time RT-PCR) assay targeting 24-nucleotide deletion in the ORF1 region of three PEDV classical attenuated vaccine strains (derived from classical strains) was established, which could effectively distinguish PEDV classical attenuated vaccine strains and wild-type strains. ResultsIn our study, the RNA detection limits for PEDV wild-type strains and classical attenuated vaccine strains were 3.0×103 copies and 3.0×102 copies, respectively. This assay was highly specific for PEDV, with no cross-reactivity for other viruses, causing diarrheal disease. A total of 117 swine fecal samples were analysed by this established real-time RT-PCR assay, indicating that classical attenuated vaccine strains were present in the swine herds in Gansu province, China. Additionally, a pair of primers and two probes of the established assay can be placed in one reaction tube to distinguish PEDV classical attenuated vaccine strains and wild-type strains. ConclusionOur results provided an effective and cheap technology platform for clinical rapid identification testing and epidemiological investigations of PEDV wild-type strains and classical attenuated vaccine strains


2004 ◽  
Vol 50 (1) ◽  
pp. 67-72 ◽  
Author(s):  
Leo L M Poon ◽  
Kwok Hung Chan ◽  
On Kei Wong ◽  
Timothy K W Cheung ◽  
Iris Ng ◽  
...  

Abstract Background: A novel coronavirus (CoV) was recently identified as the agent for severe acute respiratory syndrome (SARS). We compared the abilities of conventional and real-time reverse transcription-PCR (RT-PCR) assays to detect SARS CoV in clinical specimens. Methods: RNA samples isolated from nasopharyngeal aspirate (NPA; n = 170) and stool (n = 44) were reverse-transcribed and tested by our in-house conventional RT-PCR assay. We selected 98 NPA and 37 stool samples collected at different times after the onset of disease and tested them in a real-time quantitative RT-PCR specific for the open reading frame (ORF) 1b region of SARS CoV. Detection rates for the conventional and real-time quantitative RT-PCR assays were compared. To investigate the nature of viral RNA molecules in these clinical samples, we determined copy numbers of ORF 1b and nucleocapsid (N) gene sequences of SARS CoV. Results: The quantitative real-time RT-PCR assay was more sensitive than the conventional RT-PCR assay for detecting SARS CoV in samples collected early in the course of the disease. Real-time assays targeted at the ORF 1b region and the N gene revealed that copy numbers of ORF 1b and N gene sequences in clinical samples were similar. Conclusions: NPA and stool samples can be used for early diagnosis of SARS. The real-time quantitative RT-PCR assay for SARS CoV is potentially useful for early detection of SARS CoV. Our results suggest that genomic RNA is the predominant viral RNA species in clinical samples.


2022 ◽  
Author(s):  
Tung Phan ◽  
Stephanie Boes ◽  
Melissa McCullough ◽  
Jamie Gribschaw ◽  
Alan Wells

A new SARS-CoV-2 Omicron (B.1.1.529) Variant of Concern has been emerging worldwide. We are seeing an unprecedented surge in patients due to Omicron in this COVID-19 pandemic. A rapid and accurate molecular test that effectively differentiates Omicron from other SARS-CoV-2 variants would be important for both epidemiologic value and for directing variant-specific therapies such as monoclonal antibody infusions. In this study, we developed a real-time RT-PCR assay for the qualitative detection of Omicron from routine clinical specimens sampling the upper respiratory tract. The limit of detection of the SARS-CoV-2 Omicron variant RT-PCR assay was 2 copies/μl. Notably, the assay did not show any cross-reactivity with other SARS-CoV-2 variants including Delta (B.1.617.2). This SARS-CoV-2 Omicron variant RT-PCR laboratory-developed assay is sensitive and specific to detect Omicron in nasopharyngeal and nasal swab specimens.


2015 ◽  
Vol 2015 ◽  
pp. 1-18 ◽  
Author(s):  
Evelyne Picard-Meyer ◽  
Carine Peytavin de Garam ◽  
Jean Luc Schereffer ◽  
Clotilde Marchal ◽  
Emmanuelle Robardet ◽  
...  

This study evaluates the performance of five two-step SYBR Green RT-qPCR kits and five one-step SYBR Green qRT-PCR kits using real-time PCR assays. Two real-time thermocyclers showing different throughput capacities were used. The analysed performance evaluation criteria included the generation of standard curve, reaction efficiency, analytical sensitivity, intra- and interassay repeatability as well as the costs and the practicability of kits, and thermocycling times. We found that the optimised one-step PCR assays had a higher detection sensitivity than the optimised two-step assays regardless of the machine used, while no difference was detected in reaction efficiency,R2values, and intra- and interreproducibility between the two methods. The limit of detection at the 95% confidence level varied between 15 to 981 copies/µL and 41 to 171 for one-step kits and two-step kits, respectively. Of the ten kits tested, the most efficient kit was the Quantitect SYBR Green qRT-PCR with a limit of detection at 95% of confidence of 20 and 22 copies/µL on the thermocyclers Rotor gene Q MDx and MX3005P, respectively. The study demonstrated the pivotal influence of the thermocycler on PCR performance for the detection of rabies RNA, as well as that of the master mixes.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Wei-Lin Fu ◽  
Sheng-Ren Sun ◽  
Hua-Ying Fu ◽  
Ru-Kai Chen ◽  
Jin-Wei Su ◽  
...  

Sugarcane mosaic disease is caused by theSugarcane streak mosaic virus(SCSMV; genusPoacevirus, familyPotyviridae) which is common in some Asian countries. Here, we established a protocol of a one-step real-time quantitative reverse transcription PCR (real-time qRT-PCR) using the TaqMan probe for the detection of SCSMV in sugarcane. Primers and probes were designed within the conserved region of the SCSMV coat protein (CP) gene sequences. Standard single-stranded RNA (ssRNA) generated by PCR-based gene transcripts of recombinant pGEM-CP plasmidin vitroand total RNA extracted from SCSMV-infected sugarcane were used as templates of qRT-PCR. We further performed a sensitivity assay to show that the detection limit of the assay was 100 copies of ssRNA and 2 pg of total RNA with good reproducibility. The values obtained were approximately 100-fold more sensitive than those of the conventional RT-PCR. A higher incidence (68.6%) of SCSMV infection was detected by qRT-PCR than that (48.6%) with conventional RT-PCR in samples showing mosaic symptoms. SCSMV-free samples were verified by infection withSugarcane mosaic virus(SCMV) orSorghum mosaic virus(SrMV) or a combination of both. The developed qRT-PCR assay may become an alternative molecular tool for an economical, rapid, and efficient detection and quantification of SCSMV.


Sign in / Sign up

Export Citation Format

Share Document