scholarly journals De novogenome assembly ofGeosmithia morbida, the causal agent of thousand cankers disease

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1952 ◽  
Author(s):  
Taruna A. Schuelke ◽  
Anthony Westbrook ◽  
Kirk Broders ◽  
Keith Woeste ◽  
Matthew D. MacManes

Geosmithia morbidais a filamentous ascomycete that causes thousand cankers disease in the eastern black walnut tree. This pathogen is commonly found in the western U.S.; however, recently the disease was also detected in several eastern states where the black walnut lumber industry is concentrated.G. morbidais one of two known phytopathogens within the genusGeosmithia, and it is vectored into the host tree via the walnut twig beetle. We present the firstde novodraft genome ofG. morbida. It is 26.5 Mbp in length and contains less than 1% repetitive elements. The genome possesses an estimated 6,273 genes, 277 of which are predicted to encode proteins with unknown functions. Approximately 31.5% of the proteins inG. morbidaare homologous to proteins involved in pathogenicity, and 5.6% of the proteins contain signal peptides that indicate these proteins are secreted. Several studies have investigated the evolution of pathogenicity in pathogens of agricultural crops; forest fungal pathogens are often neglected because research efforts are focused on food crops.G. morbidais one of the few tree phytopathogens to be sequenced, assembled and annotated. The first draft genome ofG. morbidaserves as a valuable tool for comprehending the underlying molecular and evolutionary mechanisms behind pathogenesis within theGeosmithiagenus.

2016 ◽  
Author(s):  
Taruna Aggarwal ◽  
Anthony Westbrook ◽  
Kirk Broders ◽  
Keith Woeste ◽  
Matthew D MacManes

Geosmithia morbida is a filamentous ascomycete that causes Thousand Cankers Disease in the eastern black walnut tree. This pathogen is commonly found in the western U.S.; however, recently the disease was also detected in several eastern states where the black walnut lumber industry is concentrated. G. morbida is one of two known phytopathogens within the genus Geosmithia, and it is vectored into the host tree via the walnut twig beetle. We present the first de novo draft genome of G. morbida. It is 26.5 Mbp in length and contains less than 1% repetitive elements. The genome possesses an estimated 6,273 genes, 277 of which are predicted to encode proteins with unknown functions. Approximately 31.5% of the proteins in G. morbida are homologous to proteins involved in pathogenicity, and 5.6% of the proteins contain signal peptides that indicate these proteins are secreted. Several studies have investigated the evolution of pathogenicity in pathogens of agricultural crops; forest fungal pathogens are often neglected because research efforts are focused on food crops. G. morbida is one of the few tree phytopathogens to be sequenced, assembled and annotated. The first draft genome of G. morbida serves as a valuable tool for comprehending the underlying molecular and evolutionary mechanisms behind pathogenesis within the Geosmithia genus. Keywords: de novo genome assembly, pathogenesis, forest pathogen, black walnut, walnut twig beetle.


2016 ◽  
Author(s):  
Taruna Aggarwal ◽  
Anthony Westbrook ◽  
Kirk Broders ◽  
Keith Woeste ◽  
Matthew D MacManes

Geosmithia morbida is a filamentous ascomycete that causes Thousand Cankers Disease in the eastern black walnut tree. This pathogen is commonly found in the western U.S.; however, recently the disease was also detected in several eastern states where the black walnut lumber industry is concentrated. G. morbida is one of two known phytopathogens within the genus Geosmithia, and it is vectored into the host tree via the walnut twig beetle. We present the first de novo draft genome of G. morbida. It is 26.5 Mbp in length and contains less than 1% repetitive elements. The genome possesses an estimated 6,273 genes, 277 of which are predicted to encode proteins with unknown functions. Approximately 31.5% of the proteins in G. morbida are homologous to proteins involved in pathogenicity, and 5.6% of the proteins contain signal peptides that indicate these proteins are secreted. Several studies have investigated the evolution of pathogenicity in pathogens of agricultural crops; forest fungal pathogens are often neglected because research efforts are focused on food crops. G. morbida is one of the few tree phytopathogens to be sequenced, assembled and annotated. The first draft genome of G. morbida serves as a valuable tool for comprehending the underlying molecular and evolutionary mechanisms behind pathogenesis within the Geosmithia genus. Keywords: de novo genome assembly, pathogenesis, forest pathogen, black walnut, walnut twig beetle.


2016 ◽  
Author(s):  
Taruna Aggarwal ◽  
Anthony Westbrook ◽  
Kirk Broders ◽  
Keith Woeste ◽  
Matthew D MacManes

Background: Geosmithia morbida is a filamentous ascomycete that causes Thousand Cankers Disease in the eastern black walnut tree. This pathogen is commonly found in the western U.S.; however, recently the disease was also detected in several eastern states where the black walnut lumber industry is concentrated. G. morbida is one of two known phytopathogens within the genus Geosmithia, and it is vectored into the host tree via the walnut twig beetle. Results: We present the first de novo draft genome of G. morbida. It is 26.5 Mbp in length and contains less than 1% repetitive elements. The genome possesses an estimated 6,273 genes, 277 of which are predicted to encode proteins with unknown functions. Approximately 31.5% of the proteins in G. morbida are homologous to proteins involved in pathogenicity, and 5.6% of the proteins contain signal peptides that indicate these proteins are secreted. Conclusions: Several studies have investigated the evolution of pathogenicity in pathogens of agricultural crops; forest fungal pathogens are often neglected because research efforts are focused on food crops. G. morbida is one of the few tree phytopathogens to be sequenced, assembled and annotated. The first draft genome of G. morbida serves as a valuable tool for comprehending the underlying molecular and evolutionary mechanisms behind pathogenesis within the Geosmithia genus. Keywords: de novo genome assembly, pathogenesis, forest pathogen, black walnut, walnut twig beetle.


2019 ◽  
Vol 65 (4) ◽  
pp. 452-459
Author(s):  
Kendhl W Seabright ◽  
Scott W Myers ◽  
Stephen W Fraedrich ◽  
Albert E Mayfield ◽  
Melissa L Warden ◽  
...  

Abstract Phytosanitary treatments for logs and barked wood products are needed to mitigate the spread of thousand cankers disease through the movement of these commodities. The disease threatens eastern black walnut (Juglans nigra L.) populations in the United States. It is caused by repeated attacks by the walnut twig beetle (Pityophthorus juglandis Blackman) and subsequent canker development caused by the fungal pathogen Geosmithia morbida M. Kolařík et al. Methyl bromide (MB) fumigations were evaluated for efficacy against P. juglandis and G. morbida in J. nigra bolts. Fumigation with 82 mg/L MB for 24 h at 4.5° C eliminated P. juglandis in J. nigra, but was ineffective against G. morbida. Subsequent experiments focused on eliminating G. morbida, but results were inconclusive because of low rates of pathogen recovery from naturally infested control bolts. Final experiments used J. nigra bolts artificially inoculated with G. morbida. Fumigations with 240 and 320 mg/L MB for 72 h at 10° C were effective in eliminating G. morbida from J. nigra bolts. Results confirm that the USDA fumigation treatment schedule for logs with the oak wilt pathogen will also mitigate the risk of spreading the thousand cankers disease vector and pathogen by movement of walnut bolts and wood products.


Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1445-1445 ◽  
Author(s):  
L. Montecchio ◽  
G. Fanchin ◽  
M. Simonato ◽  
M. Faccoli

Thousand cankers disease (TCD) is a disease complex caused by the fungus Geosmithia morbida Kolařik (Ascomycota, Hypocreales) and its vector Pityophthorus juglandis Blackman 1928 (Coleoptera, Scolytinae; walnut twig beetle, WTB). Since the mid-1990s, the disease was responsible for widespread mortality of many walnut species in the United States (4). After the first detection of TCD on black walnut (Juglans nigra L.) in Italy (3), an extensive survey was activated in cooperation with the Regional Phytosanitary Service. In May 2014, early TCD symptoms (4) were observed on English walnuts (J. regia L.). Canopies showed yellowing, wilting, and dieback of the youngest twigs, and a number of small brown cankers. Longitudinal and radial sections sampled through the cankers revealed gray to brown discoloration of both phloem and bark, and the presence of bark beetle galleries. Xylem discoloration was never observed. From one ~20-year-old European walnut growing in a garden neighboring an infected black walnut plantation (Santorso, Vicenza, 45°72′ N, 11°40′ E), a number of 1- to 2.5-cm-diameter twigs showing cankers up to 2 cm long surrounding bark beetle holes were collected. Whitish mycelium producing verticillate conidiophores was detected inside the insect galleries. From the necrotic margin of eight cankers previously surface-sterilized with 3% sodium hypochlorite, two 4-mm-wide chips per canker were placed on potato dextrose agar and incubated at 28 ± 1°C in the dark. Slow growing lobate, plane, yellowish-ocher colonies with hyaline mycelium appeared in 5 days. After subculturing to the same medium, growth features, mycelium, conidiophores, and conidia with morphological characteristics matching Kolarik's description of G. morbida (2) were observed. The ITS region of rDNA from the fungus strain LM14GM001-JR was amplified by using ITS1F and ITS4 primers and sequenced obtaining a 387-bp gene fragment. BLAST analysis showed 99% identity to the G. morbida strain U19 (GenBank Accession No. KF808301.1) for 384 bp, and 99% identity to the G. morbida strain LM13GM001-JN previously isolated from J. nigra in Italy (3). From the same samples, two emerging beetles were collected and identified as P. juglandis both morphologically (5) and genetically by DNA extraction following a standard salting out protocol. The barcode region of the mitochondrial gene cytochrome oxidase I was then amplified by using universal primers (1) and sequenced to obtain a 614-bp fragment of the gene. BLAST analysis showed 100% identity to P. juglandis based on comparison with KJ451422. A few other English walnuts with both the fungus and WTB were also found close to other infected black walnut plantations. To our knowledge, this is the first record of G. morbida and P. juglandis on J. regia in Europe, where the tree is cultivated for both fruit and timber production, as well as a traditional landscape tree. Voucher specimens are stored in the TeSAF herbarium and in the DAFNAE insect collection. References: (1) O. Folmer et al. Mol. Marine Biol. Biotechnol. 3:294, 1994. (2) M. Kolarik et al. Mycologia 103:325, 2011. (3) L. Montecchio and M. Faccoli. Plant Dis. 98:696, 2014. (4) S. J. Seybold et al. USDA Forest Service, NA-PR-02-10, 2013. (5) S. L. Wood. Great Basin Naturalist Memoirs 6:1123, 1982.


2012 ◽  
Vol 13 (1) ◽  
pp. 11 ◽  
Author(s):  
Emily Freeland ◽  
Whitney Cranshaw ◽  
Ned Tisserat

Thousand cankers disease of black walnut (Juglans nigra) is the result of aggressive feeding by the walnut twig beetle (Pityophthorus juglandis) and extensive cankering around beetle galleries caused by the fungus Geosmithia morbida. We developed a consistent, reproducible inoculation technique to screen black walnut trees for their reaction to canker development following inoculation with G. morbida. Canker areas in one-year-old trees were not affected by the location on the stem that inoculations were made. Differences in aggressiveness of G. morbida isolates, representing different rDNA ITS haplotype groups, to black walnut were observed in some experiments. However, these differences were small and evidence indicates that a single, highly aggressive haplotype is not responsible for the current TCD epidemic. Cankers formed in black walnut at all temperatures tested, but they were consistently smaller at 32/20°C day/night temperatures compared to 25/20°C. Although G. morbida is thermotolerant, higher temperatures may not enhance canker development. Accepted for publication 1 May 2012. Published 18 June 2012.


2016 ◽  
Author(s):  
Taruna A Schuelke ◽  
Anthony Westbrook ◽  
Keith Woeste ◽  
David C. Plachetzki ◽  
Kirk Broders ◽  
...  

SummaryGeosmithia morbida is an emerging fungal pathogen which serves as a paradigm for examining the evolutionary processes behind pathogenicity because it is one of two known pathogens within a genus of mostly saprophytic, beetle-associated, fungi. This pathogen causes thousand cankers disease in black walnut trees and is vectored into the host via the walnut twig beetle. G. morbida was first detected in western US and currently threatens the timber industry concentrated in eastern US.We sequenced the genomes of G. morbida and two non-pathogenic Geosmithia species and compared these species to other fungal pathogens and nonpathogens to identify genes under positive selection in G. morbida that may be associated with pathogenicity.G. morbida possesses one of the smallest genomes among the fungal species observed in this study, and one of the smallest fungal pathogen genomes to date. The enzymatic profile is this pathogen is very similar to its relatives.Our findings indicate that genome reduction is an important adaptation during the evolution of a specialized lifestyle in fungal species that occupy a specific niche, such as beetle vectored tree pathogens. We also present potential genes under selection in G. morbida that could be important for adaptation to a pathogenic lifestyle.


2011 ◽  
Vol 12 (1) ◽  
pp. 35 ◽  
Author(s):  
Ned Tisserat ◽  
Whitney Cranshaw ◽  
Melodie L. Putnam ◽  
Jay Pscheidt ◽  
Charles A. Leslie ◽  
...  

Thousand cankers disease of black walnut is caused by aggressive feeding by the walnut twig beetle and subsequent canker development around beetle galleries caused the fungus Geosmithia morbida. The authors We confirmed the presence of G. morbida from symptomatic black walnut or hybrids in California, Colorado, Idaho, New Mexico, Oregon, Utah, and Washington. Thousand cankers disease continues to cause extensive mortality to black walnut over a wide geographic region and is intensifying in the western United States. Accepted for publication 2 June 2011. Published 30 June 2011.


2019 ◽  
Vol 20 (3) ◽  
pp. 133-139 ◽  
Author(s):  
Melanie Moore ◽  
Jennifer Juzwik ◽  
Fredric Miller ◽  
Leah Roberts ◽  
Matthew D. Ginzel

Thousand cankers disease is caused by the coalescence of numerous Geosmithia morbida cankers on branches and stems of Juglans species, leading to branch dieback and eventual tree death. The fungus sporulates in galleries of the walnut twig beetle (Pityophthorus juglandis), allowing for acquisition of pathogen propagules and its subsequent transmission to other branches or trees following adult emergence. Recently, G. morbida has been isolated from Xylosandrus crassiusculus and Xyleborinus saxesenii collected in Ohio and Stenomimus pallidus collected in Indiana. These beetles are known to colonize diseased Juglans nigra in these states. In this study, an operational trap survey for ambrosia beetles, bark beetles, and other weevils was conducted in four eastern states, and captured beetles were assayed to detect G. morbida using both culture and PCR-based methods. A new primer pair (GmF3/GmR13), based on the β-tubulin region, was designed for G. morbida DNA detection. The pathogen was detected on 18 insect species using molecular methods, and live cultures were isolated from two species. This is the first report of the pathogen in Illinois and Minnesota.


2013 ◽  
Vol 14 (1) ◽  
pp. 36 ◽  
Author(s):  
John R. Fisher ◽  
David P. McCann ◽  
Nancy J. Taylor

Thousand cankers disease of walnut is a recently described disease caused by a newly described phytopathogenic fungus, Geosmithia morbida. G. morbida is now established in the Ohio landscape and has likely been present longer than initially suspected. Accepted for publication 28 October 2012. Published 1 December 2013.


Sign in / Sign up

Export Citation Format

Share Document