phytopathogenic fungus
Recently Published Documents


TOTAL DOCUMENTS

619
(FIVE YEARS 201)

H-INDEX

49
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Ulyana Bliznyuk ◽  
Natalya Chulikova ◽  
Anna Malyuga

Crops, especially potatoes, are prone to a wide range of fungal, viral and bacterial diseases, including black scurf caused by Rhizoctoniasolani. This study focused on the radiation treatment of the phytopathogenic fungus RhizoctoniasolaniKuhn, grown from sclerotium irradiated with 1 MeV electrons in the dose range from 20 to 4500 Gy. The doses absorbed by the sclerotia were determined using computer simulation. The growth of the fungus samples was monitored after 24, 48, 72, and 96 hours from the time of seeding. It was found that the dependence of the radial growth velocity of R. solani on the time after irradiation with doses ranging from 20to 1800 Gywas nonlinear. Irradiation at a dose over 4500 Gyled to complete suppression of the germination of R. solani sclerotia. Keywords: radiation treatment, electron radiation, radiation dose, sclerotia of Rhizoctoniasolani, Kuhn, radial velocity of growth


Author(s):  
Siryuyumunsi Daniel ◽  
Assane Hamidou Abdoulaye ◽  
Yue Deng ◽  
Mingde Wu ◽  
Jing Zhang ◽  
...  

2022 ◽  
Author(s):  
Jingya Zhao ◽  
Mengya Peng ◽  
Wenbo Chen ◽  
Xiaoping Xing ◽  
Yixuan Shan ◽  
...  

Fusarium pseudograminearum is a soil-borne, hemibiotrophic phytopathogenic fungus that causes Fusarium crown rot and Fusarium head blight in wheat. The basic leucine zipper proteins (bZIPs) are evolutionarily conserved transcription factors that play crucial roles in a range of growth and developmental processes and the responses to biotic and abiotic stresses. However, the roles of bZIP transcription factors remains unknown in F. pseudograminearum. In this study, a bZIP transcription factor Fpkapc was identified to localize to the nucleus in F. pseudograminearum. A mutant strain (Δfpkapc) was constructed to determine the role of Fpkapc in growth and pathogenicity of F. pseudograminearum. Transcriptomic analyses revealed that many genes involved in basic metabolism and oxidation-reduction processes were down-regulated, whereas many genes involved in metal iron binding were up-regulated in the Δfpkapc strain, compared with the wild type. Correspondingly, the mutant had severe growth defects and displayed abnormal hyphal tips. Conidiation in the Fpkapc mutant was reduced, with more conidia in smaller size and fewer septa than in the wild type. Also, relative to WT, the Δfpkapc strain showed greater replaced by increased tolerance to ion stress, but decreased tolerance to H2O2. The mutant caused smaller disease lesions on wheat and barley plants, but the significantly increased TRI genes expression, compared with the wild type. In summary, Fpkapc plays multiple roles in governing growth, development, stress responses, and virulence in F. pseudograminearum.


2022 ◽  
Author(s):  
Ingrid Richer ◽  
Silvia Radosa ◽  
Zoltan Cseresnyes ◽  
Iluiia Ferling ◽  
Hannah Buettner ◽  
...  

The phytopathogenic fungus Rhizopus microsporus harbours a bacterial endosymbiont (Mycetohabitans rhizoxinica) for the production of the toxin rhizoxin, the causative agent of rice seedling blight. This toxinogenic bacterial-fungal alliance is, however, not restricted to the plant disease, but has been detected in numerous environmental isolates from geographically distinct sites covering all five continents. Yet, the ecological role of rhizoxin beyond rice seedling blight has been unknown. Here we show that rhizoxin serves the fungal host in fending off protozoan and metazoan predators. Fluorescence microscopy and co-culture experiments with the fungivorous amoeba Protostelium aurantium revealed that ingestion of R. microsporus spores is toxic to P. aurantium. This amoebicidal effect is caused by the bacterial rhizoxin congener rhizoxin S2, which is also lethal towards the model nematode Caenorhabditis elegans. By combining stereomicroscopy, automated image analyses, and quantification of nematode movement we show that the fungivorous nematode Aphelenchus avenae actively feeds on R. microsporus that is lacking endosymbionts, while worms co-incubated with symbiotic R. microsporus are significantly less lively. This work uncovers an unexpected ecological role of rhizoxin as shield against micropredators. This finding suggests that predators may function an evolutionary driving force to maintain toxin-producing endosymbionts in non-pathogenic fungi.


mBio ◽  
2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Chong Xie ◽  
Qingna Shang ◽  
Chenmi Mo ◽  
Yannong Xiao ◽  
Gaofeng Wang ◽  
...  

Understanding the reproduction and pathogenesis mechanism of phytopathogens could provide new opinions to effectively control fungal diseases. Although it has been known that effectors and extracellular hydrolytic enzymes secreted by phytopathogenic fungi play important roles in fungus-host interactions, the secretion system for the delivery of virulence factors to the host is still largely undescribed.


2021 ◽  
Vol 7 (12) ◽  
pp. 1087
Author(s):  
Alberto Pedrero-Méndez ◽  
H. Camilo Insuasti ◽  
Theodora Neagu ◽  
María Illescas ◽  
M. Belén Rubio ◽  
...  

The search for endophytic fungi in the roots of healthy wheat plants from a non-irrigation field trial allowed us to select 4 out of a total of 54 cultivable isolates belonging to the genus Trichoderma, identified as T. harzianum T136 and T139, T. simmonsii T137, and T. afroharzianum T138. In vitro assays against the phytopathogenic fungus Fusarium graminearum showed that the T. harzianum strains had the highest biocontrol potential and that T136 exhibited the highest cellulase and chitinase activities. Production patterns of eight phytohormones varied among the Trichoderma strains. All four, when applied alone or in combination, colonized roots of other wheat cultivars and promoted seed germination, tillering, and plant growth under optimal irrigation conditions in the greenhouse. Apart from T136, the endophytic Trichoderma strains showed plant protection capacity against drought as they activated the antioxidant enzyme machinery of the wheat plants. However, T. simmonsii T137 gave the best plant size and spike weight performance in water-stressed plants at the end of the crop. This trait correlated with significantly increased production of indole acetic acid and abscisic acid and increased 1-aminocyclopropane-1-carboxylic acid deaminase activity by T137. This study shows the potential of Trichoderma endophytes and that their success in agricultural systems requires careful selection of suitable strains.


2021 ◽  
Vol 7 (12) ◽  
pp. 1079
Author(s):  
Adriana de Almeida Pinto Bracarense ◽  
Jociani Ascari ◽  
Giovanni Gontijo de Souza ◽  
Thays Silva Oliveira ◽  
Antonio Ruano-González ◽  
...  

Clovane and isocaryolane derivatives have been proven to show several levels of activity against the phytopathogenic fungus Botrytis cinerea. Both classes of sesquiterpenes are reminiscent of biosynthetic intermediates of botrydial, a virulence factor of B. cinerea. Further development of both classes of antifungal agent requires exploration of the structure–activity relationships for the antifungal effects on B. cinerea and phytotoxic effects on a model crop. In this paper, we report on the preparation of a series of alkoxy-clovane and -isocaryolane derivatives, some of them described here for the first time (2b, 2d, 2f–2h, and 4c–4e); the evaluation of their antifungal properties against B. cinerea, and their phytotoxic activites on the germination of seeds and the growth of radicles and shoots of Lactuca sativa (lettuce). Both classes of compound show a correlation of antifungal activity with the nature of side chains, with the best activity against B. cinerea for 2d, 2h, 4c and 4d. In general terms, while 2-alkoxyclovan-9-ols (2a–2e) exert a general phytotoxic effect, this is not the case for 2-arylalkoxyclovan-9-ols (2f–2i) and 8-alkoxyisocaryolan-9-ols (4a–4d), where stimulating effects would make them suitable candidates for application to plants.


Sign in / Sign up

Export Citation Format

Share Document