scholarly journals Measuring short distance dispersal of Alliaria petiolata and determining potential long distance dispersal mechanisms

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4477 ◽  
Author(s):  
Christopher A. Loebach ◽  
Roger C. Anderson

Introduction Alliaria petiolata, an herbaceous plant, has invaded woodlands in North America. Its ecology has been thoroughly studied, but an overlooked aspect of its biology is seed dispersal distances and mechanisms. We measured seed dispersal distances in the field and tested if epizoochory is a potential mechanism for long-distance seed dispersal. Methods Dispersal distances were measured by placing seed traps in a sector design around three seed point sources, which consisted of 15 second-year plants transplanted within a 0.25 m radius circle. Traps were placed at intervals ranging from 0.25–3.25 m from the point source. Traps remained in the field until a majority of seeds were dispersed. Eight probability density functions were fitted to seed trap counts via maximum likelihood. Epizoochory was tested as a potential seed dispersal mechanism for A. petiolata through a combination of field and laboratory experiments. To test if small mammals transport A. petiolata seeds in their fur, experimental blocks were placed around dense A. petiolata patches. Each block contained a mammal inclusion treatment (MIT) and control. The MIT consisted of a wood-frame (31 × 61× 31 cm) covered in wire mesh, except for the two 31 × 31 cm ends, placed over a germination tray filled with potting soil. A pan filled with bait was placed in the center of the tray. The control frame (11 × 31 × 61 cm) was placed over a germination tray and completely covered in wire mesh to exclude animal activity. Treatments were in the field for peak seed dispersal. In March, trays were moved to a greenhouse and A. petiolata seedlings were counted and then compared between treatments. To determine if A. petiolata seeds attach to raccoon (Procyon lotor) and white-tailed deer (Odocoileus virginianus) fur, wet and dry seeds were dropped onto wet and dry fur. Furs were rotated 180 degrees and the seeds that remained attached were counted. To measure seed retention, seeds were dropped on furs and rotated as before, then the furs were agitated for one hour. The seeds retained in the fur were counted. Results For the seed dispersal experiment, the 2Dt function provided the best fit and was the most biologically meaningful. It predicted that seed density rapidly declined with distance from the point source. Mean dispersal distance was 0.52 m and 95% of seeds dispersed within 1.14 m. The epizoochory field experiment showed increased mammal activity and A. petiolata seedlings in germination trays of the MIT compared to control. Laboratory studies showed 3–26% of seeds were attached and retained by raccoon and deer fur. Retention significantly increased if either seed or fur were wet (57–98%). Discussion Without animal seed vectors, most seeds fall within a short distance of the seed source; however, long distance dispersal may be accomplished by epizoochory. Our data are consistent with A. petiolata’s widespread distribution and development of dense clusters of the species in invaded areas.

2019 ◽  
Vol 286 (1894) ◽  
pp. 20182007 ◽  
Author(s):  
E. Rehm ◽  
E. Fricke ◽  
J. Bender ◽  
J. Savidge ◽  
H. Rogers

Frugivores play differing roles in shaping dispersal patterns yet seed dispersal distance is rarely quantified across entire communities. We model seed dispersal distance using gut passage times and bird movement for the majority (39 interactions) of known bird–tree interactions on the island of Saipan to highlight differences in seed dispersal distances provided by the five avian frugivores. One bird species was found to be a seed predator rather than a disperser. The remaining four avian species dispersed seeds but differences in seed dispersal distance were largely driven by interspecific variation in bird movement rather than intraspecific variation in gut passage times. The median dispersal distance was at least 56 m for all species-specific combinations, indicating all species play a role in reducing high seed mortality under the parent tree. However, one species—the Micronesian Starling—performed 94% of dispersal events greater than 500 m, suggesting this species could be a key driver of long-distance dispersal services (e.g. linking populations, colonizing new areas). Assessing variation in dispersal patterns across this network highlights key sources of variation in seed dispersal distances and suggests which empirical approaches are sufficient for modelling how seed dispersal mutualisms affect populations and communities.


Flora ◽  
2012 ◽  
Vol 207 (10) ◽  
pp. 701-706 ◽  
Author(s):  
Hongxiao Yang ◽  
Qi Lu ◽  
Bo Wu ◽  
Jintun Zhang

2007 ◽  
Vol 14 (1) ◽  
pp. 87-94 ◽  
Author(s):  
Helen M. Wallace ◽  
Martin G. Howell ◽  
David J. Lee

2021 ◽  
Author(s):  
Sissi Donna Lozada Gobilard ◽  
Florian Jeltsch ◽  
Jinlei Zhu

Abstract Background Seed dispersal plays an important role in population dynamics in agricultural ecosystems, but the effects of surrounding vegetation height on seed dispersal and population connectivity on the landscape scale have rarely been studied. Understanding the effects of surrounding vegetation height on seed dispersal will provide important information for land use management in agricultural landscapes to prevent the spread of undesired weeds or enhance functional connectivity. Methods We used two model species, Phragmites australis and Typha latifolia, growing in small natural ponds known as kettle holes, in an agricultural landscape to evaluate the effects of surrounding vegetation height on wind dispersal and population connectivity between kettle holes. Seed dispersal distance and the probability of long-distance dispersal (LDD) were simulated with the mechanistic WALD model under three scenarios of “low”, “dynamic” and “high” surrounding vegetation height. Connectivity between the origin and target kettle holes was quantified with a connectivity index adapted from Hanski and Thomas (1994). Results Our results show that mean seed dispersal distance decreases with the height of surrounding matrix vegetation, but the probability of long-distance dispersal (LDD) increases with vegetation height. This indicates an important vegetation-based trade-off between mean dispersal distance and LDD, which has an impact on connectivity. Conclusions Matrix vegetation height has a negative effect on mean seed dispersal distance but a positive effect on the probability of LDD. This positive effect and its impact on connectivity provide novel insights into landscape level (meta-)population and community dynamics — a change in matrix vegetation height by land use or climatic changes could strongly affect the spread and connectivity of wind-dispersed plants. The opposite effect of vegetation height on mean seed dispersal distance and the probability of LDD should therefore be considered in management and analyses of future land use and climate change effects.


Sign in / Sign up

Export Citation Format

Share Document