scholarly journals Local-scale determinants of arboreal spider beta diversity in a temperate forest: roles of tree architecture, spatial distance, and dispersal capacity

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5596 ◽  
Author(s):  
Qiongdao Zhang ◽  
Dong He ◽  
Hua Wu ◽  
Wei Shi ◽  
Cong Chen

Spiders are a functionally important taxon in forest ecosystems, but the determinants of arboreal spider beta diversity are poorly understood at the local scale. We examined spider assemblages in 324 European beech (Fagus sylvatica) trees of varying sizes across three forest stands in Würzburg (Germany) to disentangle the roles of tree architecture, spatial distance, and dispersal capacity on spider turnover across individual trees. A large proportion of tree pairs (66%) showed higher compositional dissimilarity in spider assemblages than expected by chance, suggesting prominent roles of habitat specialization and/or dispersal limitation. Trees with higher dissimilarity in DBH and canopy volume, and to a lesser extent in foliage cover, supported more dissimilar spider assemblages, suggesting that tree architecture comprised a relevant environmental gradient of sorting spider species. Variation partitioning revealed that 28.4% of the variation in beta diversity was jointly explained by tree architecture, spatial distance (measured by principal coordinates of neighbor matrices) and dispersal capacity (quantified by ballooning propensity). Among these, dispersal capacity accounted for a comparable proportion as spatial distance did (6.8% vs. 5.9%). Beta diversity did not significantly differ between high- and low-vagility groups, but beta diversity in species with high vagility was more strongly determined by spatially structured environmental variation. Altogether, both niche specialization, along the environmental gradient defined by tree architecture, and dispersal limitation are responsible for structuring arboreal spider assemblages. High dispersal capacity of spiders appears to reinforce the role of niche-related processes.

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245249
Author(s):  
Lamei Jiang ◽  
Guanghui Lv ◽  
Yanming Gong ◽  
Yan Li ◽  
Hengfang Wang ◽  
...  

Species dissimilarity (beta diversity) primarily reflects the spatio–temporal changes in the species composition of a plant community. The correlations between β diversity and environmental factors and spatial distance can be used to explain the magnitudes of environmental filtering and dispersal. However, little is known about the relative roles and importance of neutral and niche-related factors in the assemblage of plant communities with different life forms in deserts. We found that in desert ecosystems, the β diversity of herbaceous plants was the highest, followed by that of shrubs and trees. The changes in the β diversity of herbs and shrubs had stronger correlations with the environment, indicating that community aggregation was strongly affected by niche processes. The soil water content and salt content were the key environmental factors affecting species distributions of the herb and shrub layers, respectively. Spatial distance explained a larger amount of the variation in tree composition, indicating that dispersal limitation was the main factor affecting the construction of the tree layer community. The results suggest that different life forms may determine the association between organisms and the environment. These findings suggest that the spatial patterns of plant community species in the Ebinur Lake desert ecosystem are the result of the combined effects of environmental filtering and dispersal limitation.


Author(s):  
Matthew C. Fitzpatrick ◽  
Aaron M. Ellison

Climatic change likely will exacerbate current threats to carnivorous plants. However, estimating the severity of climatic change is challenged by the unique ecology of carnivorous plants, including habitat specialization, dispersal limitation, small ranges, and small population sizes. We discuss and apply methods for modeling species distributions to overcome these challenges and quantify the vulnerability of carnivorous plants to rapid climatic change. Results suggest that climatic change will reduce habitat suitability for most carnivorous plants. Models also project increases in habitat suitability for many species, but the extent to which these increases may offset habitat losses will depend on whether individuals can disperse to and establish in newly suitable habitats outside of their current distribution. Reducing existing stressors and protecting habitats where numerous carnivorous plant species occur may ameliorate impacts of climatic change on this unique group of plants.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Jie Yang ◽  
Nathan G. Swenson ◽  
Guocheng Zhang ◽  
Xiuqin Ci ◽  
Min Cao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document