scholarly journals Morphological variation of leaf traits in the Ternstroemia lineata species complex (Ericales: Penthaphylacaceae) in response to geographic and climatic variation

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8307
Author(s):  
Othón Alcántara-Ayala ◽  
Ken Oyama ◽  
César A. Ríos-Muñoz ◽  
Gerardo Rivas ◽  
Santiago Ramirez-Barahona ◽  
...  

Variation in leaf morphology is correlated with environmental variables, such as precipitation, temperature and soil composition. Several studies have pointed out that individual plasticity can largely explain the foliar phenotypic differences observed in populations due to climatic change and have suggested that the environment plays an important role in the evolution of plant species by selecting for phenotypic variation. Thus, the study of foliar morphology in plant populations can help us identify the environmental factors that have potentially influenced the process of species diversification. In this study, we analyzed morphological variation in the leaf traits of the Ternstroemia lineata species complex (Penthaphylacaceae) and its relation to climatic variables across the species distribution area to identify the patterns of morphological differentiation within this species complex. Based on the collected leaves of 270 individuals from 32 populations, we analyzed nine foliar traits using spatial interpolation models and multivariate statistics. A principal component analysis identified three main morphological traits (leaf length and two leaf shape variables) that were used to generate interpolated surface maps to detect discrete areas delimited by zones of rapid change in the values of the morphological traits. We identified a mosaic coarse-grain pattern of geographical distribution in the variation of foliar traits. According to the interpolation maps, we could define nine morphological groups and their geographic distributions. Longer leaves, spatulate leaves and the largest foliar area were located in sites with lower precipitation and higher seasonality of precipitation following a northwest–southeast direction and following significant latitudinal and longitudinal gradients. According to the phenogram of the relationships of the nine morphological groups based on morphological similarity, the putative species and subspecies of the T. lineata species complex did not show a clear pattern of differentiation. In this study, we found a complex pattern of differentiation with some isolated populations and some other contiguous populations differentiated by different traits. Further genetic and systematic studies are needed to clarify the evolutionary relationships in this species complex.

Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1160
Author(s):  
Martino Adamo ◽  
Stefano Mammola ◽  
Virgile Noble ◽  
Marco Mucciarelli

We studied the ecology, distribution, and phylogeography of Tephroseris balbisiana, a rare plant whose range is centered to the South-Western Alps. Our aim was to assess the extent of intraspecific variability within the nominal species and the conservation status of isolated populations. We studied genetic diversity across the whole species range. We analyzed leaf traits, which are distinctive morphological characters within the Tephroseris genus. A clear pattern of genetic variation was found among populations of T. balbisiana, which clustered according to their geographic position. On the contrary, there was a strong overlap in the morphological space of individuals across the species’ range, with few peripheral populations diverging in their leaf morphology. Studying habitat suitability by means of species distribution models, we observed that T. balbisiana range is primarily explained by solar radiation and precipitation seasonality. Environmental requirements could explain the genetic and morphological uniformity of T. balbisiana in its core distribution area and justify genetic, morphological, and ecological divergences found among the isolated populations of the Apennines. Our findings emphasize the need to account for the whole diversity of a species, comprising peripheral populations, in order to better estimate its status and to prioritize areas for its conservation.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2589
Author(s):  
Dmitry P. Karabanov ◽  
Petr G. Garibian ◽  
Eugeniya I. Bekker ◽  
Rimma Z. Sabitova ◽  
Alexey A. Kotov

Most studies of water flea (Crustacea: Cladocera) invasions are concentrated on a few taxa with an obvious harmful influence on native ecosystems, while our knowledge of cases of anthropogenic introduction with not-so-obvious consequences, in most other taxa, is poor. We found in the Volga basin (European Russia) a population that contained D. curvirostris Eylmann, 1887 and its hybrids with D. korovchinskyi Kotov et al. 2021. The latter taxon is endemic to the Far East and it has appeared in the Volga basin as a result of past human-mediated transportation. The population from Bakhilovo is represented by two strongly different groups of the COI haplotypes belonging, respectively, to (1) D. curvirostris and (2) D. korovchinskyi. We detected SNPs in the position 60 of the HSP-90ex3 locus and in the 195 positions of 28S rRNA locus, which differentiate two species. Part of the specimens from Bakhilovo belonged to D. curvirostris s.str., demonstrating homozygote SNP sites in two loci, but two specimens had heterozygote SNP sites in both nuclear loci. They belong to D. curvirostris x korovchinskyi hybrids. Most morphological traits of the females were characteristic of D. curvirostris. We found in some specimens some characters which could suggest their hybrid status, but this opinion is a hypothesis only, which needs to be checked on more ample material. The exact hybrid system in this pond is not known. Moreover, we have no evidences of sexual reproduction of the hybrids; they could reproduce by parthenogenesis only as is known for hybrids of the D. pulex group, or continuously crossing with parents like some members of D. longispina group. However, poor parental D. korovchinskyi was not detected in the pond either morphologically or genetically. The exact vector of its past anthropogenic transportation to the Volga is unknown. Most probably, just ephippia of D. korovchinskyi were translocated replaced from the Khabarovsk Territory to the Samara Area somehow. This is the first report on hybrids within the D. curvirostris species complex. Here, we demonstrated that accurate studies with deep resolution increase the number of revealed cryptic invasions. We expect that the number of revealed cases of cryptic interspecific invasions will grow rapidly.


2016 ◽  
Author(s):  
Matheus Henrique Nunes ◽  
Matthew P. Davey ◽  
David Anthony Coomes

Abstract. Understanding the causes of variation in plant functional traits is a central issue in ecology, particularly in the context of global change. Analyses of the drivers of traits variation based on thousands of tree species are starting to unravel patterns of variation at the global scale, but these studies tend to focus on interspecific variation, and the contribution of intraspecific changes remains less well understood. Hyperspectroscopy is a recently developed technology for estimating the traits of fresh leaves. Few studies have evaluated its potential for assessing inter- and intra-specific trait variability in community ecology. Working with 24 leaf traits for European tree species on contrasting soil types, found growing on deep alluvial soils and nearby shallow chalk soils, we ask: (i) What contribution do soil type and species identity make to trait variation? (ii) When traits are clustered into three functional groups (light capture and growth, leaf structure and defence, as well as rock-derived nutrients), are some groups more affected by soil than others? (iii) What traits can be estimated precisely using field spectroscopy? (iv) Can leaf spectra be used to detect inter-soil as well as inter-specific variation in traits? The contribution of species and soil-type effects to variation in traits were evaluated using statistical analyses. Foliar traits were predicted from spectral reflectance using partial least square regression, and so inter- and intra-specific variation. Most leaf traits varied greatly among species. The effects of soil type were generally weak by comparison. Macronutrient concentrations were greater on alluvial than chalk soils while micronutrient concentration showed the opposite trend. However, structural traits, as well as most pigments and phenolic concentrations varied little with soil type. Field spectroscopy provided accurate estimates of species-level trait values, but was less effective at detecting subtle variation of rock-derived nutrients between soil types. Field spectroscopy was a powerful technique for estimating cross-species variation in foliar traits and Si predictions using spectroscopy appear to be promising. However, it was unable to detect subtle within-species variation of traits associated with soil type.


2014 ◽  
Vol 6 (2) ◽  
pp. 178-184 ◽  
Author(s):  
KiByung LIM ◽  
Adnan YOUNIS ◽  
Jong TAEK PARK ◽  
Yoon JUNG HWANG

In this study naturally growing morphological variation of Lilium tsingtauense (Korean wheel lily), from southern Chung San Island to northern Mount Seorak, was investigated in 16 habitats around the country. Morphological analysis revealed that this species had its own unique characteristics in different habitats. Flowers with luster are in actinomorphic form, with shades of orange, each plant having an average of 2.4 flowers that blossom upward. The shape of flower petals was from oval to oblong. The width of the petals, which determines the shape of the flower, significantly varied among regions. Flower petals showed purple spots and its occurrence greatly varied among plants from almost none to 300 spots per flower. In addition, when the number of spots increased, the flower color was more vivid. Leaves were typically one-tiered verticillate and most of the leaves were long, oval and some were lanceolate. Young leaves showed definitive patterns that faded during growth. Starting from the verticillate leaves, stems below the leaves were smooth, although 81% of all stems, above the verticillate leaves, showed rough micro-protrusions. Bulb shapes were long and vertically elliptical. The ramentum was light yellow in color and the base was darker, with the color fading toward the upper region of the plant. The shape of the ramentum was long, with a pointy end, and its adhesiveness was weak. This study offers basic fundamental information for the effective exploitation and recognition of L. tsingtauense resources as a potential cut flower and potting plant in floral trade worldwide.


Sign in / Sign up

Export Citation Format

Share Document