scholarly journals Citizen science in the marine environment: estimating common dolphin densities in the north-east Atlantic

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8335
Author(s):  
James R. Robbins ◽  
Lucy Babey ◽  
Clare B. Embling

Background Citizen science is increasingly popular and has the potential to collect extensive datasets at lower costs than traditional surveys conducted by professional scientists. Ferries have been used to collect data on cetacean populations for decades, providing long-term time series for monitoring of cetacean populations. One cetacean species of concern is the common dolphin, which has been found stranded around the north-east Atlantic in recent years, with high numbers on French coasts being attributed to fisheries bycatch. We estimate common dolphin densities in the north-east Atlantic and investigate the ability of citizen science data to identify changes in marine mammal densities and areas of importance. Materials and Methods Data were collected by citizen scientists on ferries between April and October in 2006–2017. Common dolphin sightings data from two ferry routes across three regions, Bay of Biscay (n = 569); south-west United Kingdom to the Isles of Scilly in the Celtic Sea (n = 260); and English Channel (n = 75), were used to estimate density across ferry routes. Two-stage Density Surface Models accounted for imperfect detection, and tested the influence of environmental (chlorophyll a, sea surface temperature, depth, and slope), spatial (latitude and longitude) and temporal terms (year and Julian day) on occurrence. Results Overall detection probability was highest in the areas sampled within the English Channel (0.384) and Bay of Biscay (0.348), and lowest on the Scilly’s route (0.158). Common dolphins were estimated to occur in higher densities on the Scilly’s route (0.400 per km2) and the Bay of Biscay (0.319 per km2), with low densities in the English Channel (0.025 per km2). Densities on the Scilly’s route appear to have been relatively stable since 2006 with a slight decrease in 2017. Densities peaked in the Bay of Biscay in 2013 with lower numbers since. Densities in the English Channel appear to have increased over time since 2009. Discussion This study highlights the effectiveness of citizen science data to investigate the distribution and density of cetaceans. The densities and temporal changes shown by this study are representative of those from wider-ranging robust estimates. We highlight the ability of citizen science to collect data over extensive periods of time which complements dedicated, designed surveys. Such long-term data are important to identify changes within a population; however, citizen science data may, in some situations, present challenges. We provide recommendations to ensure high-quality data which can be used to inform management and conservation of cetacean populations.

2019 ◽  
Author(s):  
James R Robbins ◽  
Lucy Babey ◽  
Clare B Embling

Background. Citizen science is increasingly popular and has the potential to collect extensive datasets at lower costs than traditional surveys. Ferries have been used to collect data on cetacean populations for decades, providing long-term time series allowing for monitoring of cetacean populations. One cetacean species of concern is the common dolphin, which have been found stranded around the north-east Atlantic in recent years, with high numbers on French coasts being attributed to fisheries bycatch. We estimate common dolphin densities in north-east Atlantic and investigate the power of citizen science data to identify changes in marine mammal densities and areas of importance. Materials & Methods. Data were collected by citizen scientists on ferries between April and October in 2006 - 2017. Common dolphin sightings data from two ferry routes in the Bay of Biscay (n= 569), Celtic Sea (n= 260), and English Channel (n= 75) were used to estimate detection probabilities with detection functions. Density Surface Models estimated density across ferry routes, accounting for the influence of environmental (chlorophyll a, sea surface temperature, depth, and slope), spatial (latitude and longitude) and temporal terms (year and Julian day). Results. Overall detection probability was highest in the English Channel (0.384) and Bay of Biscay (0.348), and lowest in the Celtic Sea (0.158). Common dolphins were estimated to occur in higher densities in the Celtic Sea (0.400 per km) and the Bay of Biscay (0.319 per km), with low densities in the English Channel (0.025 per km). Densities in the Celtic Sea have been relatively stable on the ferry route since 2006 with a slight decrease in 2017. Densities peaked in the Bay of Biscay in 2013 with lower numbers since. The general trend in the English Channel is for increasing densities of common dolphins over time since 2009. Discussion. This study highlights the effectiveness of citizen science data to investigate the distribution and density of cetaceans. The densities and temporal changes shown by this study are representative of those from wider-ranging robust estimates. We highlight the ability of citizen science to collect data over extensive periods of time which complements traditional surveys. Such long-term data are important to identify changes within a population; however, citizen science data may, in some situations, present challenges. We provide recommendations to ensure high-quality data which can be used to inform management and conservation of cetacean populations.


Author(s):  
James R Robbins ◽  
Lucy Babey ◽  
Clare B Embling

Background. Citizen science is increasingly popular and has the potential to collect extensive datasets at lower costs than traditional surveys. Ferries have been used to collect data on cetacean populations for decades, providing long-term time series allowing for monitoring of cetacean populations. One cetacean species of concern is the common dolphin, which have been found stranded around the north-east Atlantic in recent years, with high numbers on French coasts being attributed to fisheries bycatch. We estimate common dolphin densities in north-east Atlantic and investigate the power of citizen science data to identify changes in marine mammal densities and areas of importance. Materials & Methods. Data were collected by citizen scientists on ferries between April and October in 2006 - 2017. Common dolphin sightings data from two ferry routes in the Bay of Biscay (n= 569), Celtic Sea (n= 260), and English Channel (n= 75) were used to estimate detection probabilities with detection functions. Density Surface Models estimated density across ferry routes, accounting for the influence of environmental (chlorophyll a, sea surface temperature, depth, and slope), spatial (latitude and longitude) and temporal terms (year and Julian day). Results. Overall detection probability was highest in the English Channel (0.384) and Bay of Biscay (0.348), and lowest in the Celtic Sea (0.158). Common dolphins were estimated to occur in higher densities in the Celtic Sea (0.400 per km) and the Bay of Biscay (0.319 per km), with low densities in the English Channel (0.025 per km). Densities in the Celtic Sea have been relatively stable on the ferry route since 2006 with a slight decrease in 2017. Densities peaked in the Bay of Biscay in 2013 with lower numbers since. The general trend in the English Channel is for increasing densities of common dolphins over time since 2009. Discussion. This study highlights the effectiveness of citizen science data to investigate the distribution and density of cetaceans. The densities and temporal changes shown by this study are representative of those from wider-ranging robust estimates. We highlight the ability of citizen science to collect data over extensive periods of time which complements traditional surveys. Such long-term data are important to identify changes within a population; however, citizen science data may, in some situations, present challenges. We provide recommendations to ensure high-quality data which can be used to inform management and conservation of cetacean populations.


Author(s):  
Florencio Aguirrezabalaga ◽  
Argiloa Ceberio ◽  
Dieter Fiege

Octomagelona bizkaiensis (Annelida: Polychaeta), a new genus and species of the family Magelonidae is described from the north-eastern Atlantic. The specimens were collected from the Capbreton Canyon, Bay of Biscay, at a depth of 1000–1040 m. The new genus and species differs from all known genera and species of the family Magelonidae by the presence of eight instead of nine thoracic chaetigers.


Author(s):  
Frederic Olivier ◽  
Paulo Lana ◽  
Veronica Oliveira ◽  
Tim Worsfold

We describe Dysponetus joeli sp. nov. from shallow maerl habitats in the north-east Atlantic (English Channel and Bay of Biscay). Dysponetus joeli differs from congeneric species by a unique combination of characters, including a large syllid-like pharynx, 2–4 simple serrated neurochaetae (closely similar to notochaetae, but much smaller and more delicate), D-shaped chaetal spines and ventral cirri on the third segment. A phylogenetic parsimony analysis based on morphological traits suggests that Dysponetus is not monophyletic unless it includes the closely related genera Vigtorniella and Pseudodysponetus, which are well delineated inside the dysponetid clade. Chaetal spines seem to be secondarily derived from paleae and to have originated in infaunal dysponetid forms. They should not be considered as plesiomorphic, but as evidence to support the clade made up by Dysponetus–Vigtorniella and Pseudodysponetus as delineated by a phylogenetic analysis.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
P. D. Doherty ◽  
J. M. Baxter ◽  
F. R. Gell ◽  
B. J. Godley ◽  
R. T. Graham ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document