scholarly journals Identification and expression analysis of the DREB transcription factor family in pineapple (Ananas comosus (L.) Merr.)

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9006 ◽  
Author(s):  
Mengnan Chai ◽  
Han Cheng ◽  
Maokai Yan ◽  
SVGN Priyadarshani ◽  
Man Zhang ◽  
...  

Background Dehydration responsive element-binding (DREB) transcription factors play a crucial role in plant growth, development and stress responses. Although DREB genes have been characterized in many plant species, genome-wide identification of the DREB gene family has not yet been reported in pineapple (Ananas comosus (L.) Merr.). Results Using comprehensive genome-wide screening, we identified 20 AcoDREB genes on 14 chromosomes. These were categorized into five subgroups. AcoDREBs within a group had similar gene structures and domain compositions. Using gene structure analysis, we showed that most AcoDREB genes (75%) lacked introns, and that the promoter regions of all 20 AcoDREB genes had at least one stress response-related cis-element. We identified four genes with high expression levels and six genes with low expression levels in all analyzed tissues. We detected expression changes under abiotic stress for eight selected AcoDREB genes. Conclusions This report presents the first genome-wide analysis of the DREB transcription factor family in pineapple. Our results provide preliminary data for future functional analysis of AcoDREB genes in pineapple, and useful information for developing new pineapple varieties with key agronomic traits such as stress tolerance.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6354 ◽  
Author(s):  
Zhi Zou ◽  
Xicai Zhang

DNA-binding with one finger (Dof) proteins comprise a plant-specific transcription factor family involved in plant growth, development and stress responses. This study presents a genome-wide comparison of Dof family genes in physic nut (Jatropha curcas) and castor bean (Ricinus communis), two Euphorbiaceae plants that have not experienced any recent whole-genome duplication. A total of 25 or 24 Dof genes were identified from physic nut and castor genomes, respectively, where JcDof genes are distributed across nine out of 11 chromosomes. Phylogenetic analysis assigned these genes into nine groups representing four subfamilies, and 24 orthologous groups were also proposed based on comparison of physic nut, castor, Arabidopsis and rice Dofs. Conserved microsynteny was observed between physic nut and castor Dof-coding scaffolds, which allowed anchoring of 23 RcDof genes to nine physic nut chromosomes. In contrast to how no recent duplicate was present in castor, two tandem duplications and one gene loss were found in the Dof gene family of physic nut. Global transcriptome profiling revealed diverse patterns of Jc/RcDof genes over various tissues, and key Dof genes involved in flower development and stress response were also identified in physic nut. These findings provide valuable information for further studies of Dof genes in physic nut and castor.


Sign in / Sign up

Export Citation Format

Share Document