Genome-wide identification and expression analyses of WRKY transcription factor family members from chickpea (Cicer arietinum L.) reveal their role in abiotic stress-responses

2019 ◽  
Vol 41 (4) ◽  
pp. 467-481 ◽  
Author(s):  
Muhammad Waqas ◽  
Muhammad Tehseen Azhar ◽  
Iqrar Ahmad Rana ◽  
Farrukh Azeem ◽  
Muhammad Amjad Ali ◽  
...  
PLoS ONE ◽  
2020 ◽  
Vol 15 (8) ◽  
pp. e0236651
Author(s):  
Elamin Hafiz Baillo ◽  
Muhammad Sajid Hanif ◽  
Yinghui Guo ◽  
Zhengbin Zhang ◽  
Ping Xu ◽  
...  

2021 ◽  
Vol 22 (6) ◽  
pp. 2821
Author(s):  
Lixia Zhou ◽  
Rajesh Yarra

The AP2/ERF transcription factor family members play crucial roles in controlling plant growth and development, as well as responses to various abiotic stresses. Genome-wide identification and characterization of AP2/ERF genes has not yet been carried out in the oil palm genome. In the present work, we reported the occurrence of 172 EgAP2/ERFs (AP2, ERF, RAV & Soloist members) through genome-wide identification. Phylogenetic analysis was used to divide them into four groups, including: 34 AP2, 131 ERF, 5 RAV, and 2 Soloist gene family members. All 172 AP2/ERF members were unevenly distributed across 16 chromosomes of oil palm. Gene duplication analysis elucidated the tandem duplication of AP2/ERFs on chromosome blocks of the oil palm genome during evolution. Gene structure as well as conserved motif analysis demonstrated the conserved nature of intron/exon organization and motifs among the AP2/ERF genes. Several cis-regulatory elements—related to hormone, stress, and defense responses—were identified in the promoter regions of AP2/ERFs. Tissue-specific expression of 172 AP2/ERFs in five different tissues of oil palm was also revealed by heatmap analysis using the available transcriptome data. Finally, abiotic stress (salinity, cold & drought)-responsive AP2/ERFs in the oil palm genome were validated through qPCR analysis. Our study provided valuable information on oil palm AP2/ERF superfamily members and dissected their role in abiotic stress conditions.


2018 ◽  
Vol 36 (3) ◽  
pp. 451-468 ◽  
Author(s):  
Farrukh Azeem ◽  
Bilal Ahmad ◽  
Rana Muhammad Atif ◽  
Muhammad Amjad Ali ◽  
Habibullah Nadeem ◽  
...  

2017 ◽  
Vol 11 (06) ◽  
pp. 716-726 ◽  
Author(s):  
Eduardo Goiano da Silva ◽  
◽  
Tania Mayumi Ito ◽  
Silvia Graciele Hülse de Souza ◽  
◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (7) ◽  
pp. e0181573 ◽  
Author(s):  
Chao Zhang ◽  
Dongdong Wang ◽  
Chenghui Yang ◽  
Nana Kong ◽  
Zheng Shi ◽  
...  

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7291 ◽  
Author(s):  
Lei Wang ◽  
Wenjing Yao ◽  
Yao Sun ◽  
Jiying Wang ◽  
Tingbo Jiang

The WRKY transcription factor family is one of the largest groups of transcription factor in plants, playing important roles in growth, development, and biotic and abiotic stress responses. Many WRKY genes have been cloned from a variety of plant species and their functions have been analyzed. However, the studies on WRKY transcription factors in tree species under abiotic stress are still not well characterized. To understand the effects of the WRKY gene in response to abiotic stress, mRNA abundances of 102 WRKY genes in Populus simonii × P. nigra were identified by RNA sequencing under normal and salt stress conditions. The expression of 23 WRKY genes varied remarkably, in a tissue-specific manner, under salt stress. Since the WRKY56 was one of the genes significantly induced by NaCl treatment, its cDNA fragment containing an open reading frame from P. simonii × P. nigra was then cloned and transferred into Arabidopsis using the floral dip method. Under salt stress, the transgenic Arabidopsis over-expressed the WRKY56 gene, showing an increase in fresh weight, germination rate, proline content, and peroxidase and superoxide dismutase activity, when compared with the wild type. In contrast, transgenic Arabidopsis displayed a decrease in malondialdehyde content under salt stress. Overall, these results indicated that the WRKY56 gene played an important role in regulating salt tolerance in transgenic Arabidopsis.


2020 ◽  
Author(s):  
Yue Liu ◽  
Nannan Liu ◽  
Xiong Deng ◽  
Dongmiao Liu ◽  
Mengfei Li ◽  
...  

Abstract Background: DNA binding with one finger (Dof) transcription factors play important roles in plant growth and abiotic stress responses. Although genome-wide identification and analysis of the DOF transcription factor family has been reported in other species, no relevant studies have emerged in wheat. The aim of this study was to investigate the evolutionary and functional characteristics associated with plant growth and abiotic stress responses by genome-wide analysis of the wheat Dof transcription factor gene family. Results: Using the recently released wheat genome database (IWGSC RefSeq v1.1), we identified 96 wheat Dof gene family members, which were phylogenetically clustered into five distinct subfamilies. Gene duplication analysis revealed a broad and heterogeneous distribution of TaDofs on the chromosome groups 1 to 7, and obvious tandem duplication genes were present on chromosomes 2 and 3.Members of the same gene subfamily had similar exon-intron structures, while members of different subfamilies had obvious differences. Functional divergence analysis indicated that type-II functional divergence played a major role in the differentiation of the TaDof gene family. Positive selection analysis revealed that the Dof gene family experienced different degrees of positive selection pressure during the process of evolution, and five significant positive selection sites (30A, 31T, 33A, 102G and 104S) were identified. Additionally, nine groups of coevolving amino acid sites, which may play a key role in maintaining the structural and functional stability of Dof proteins, were identified. The results from the RNA-seq data and qRT-PCR analysis revealed that TaDof genes exhibited obvious expression preference or specificity in different organs and developmental stages, as well as in diverse abiotic stress responses. Most TaDof genes were significantly upregulated by heat, PEG and heavy metal stresses. Conclusions: The genome-wide analysis and identification of wheat DOF transcription factor family and the discovery of important amino acid sites are expected to provide new insights into the structure, evolution and function of the plant Dof gene family.


Sign in / Sign up

Export Citation Format

Share Document