H∞Control of Secondary Suspension in Railway Vehicles Equipped with a MR Damper

2013 ◽  
Vol 30 (10) ◽  
pp. 1051-1059
Author(s):  
Yu Jeong Shin ◽  
Won Hee You ◽  
Hyun Moo Hur ◽  
Joon Hyuk Park
2016 ◽  
Vol 65 (3) ◽  
pp. 1121-1129 ◽  
Author(s):  
Peng Wang ◽  
TX Mei ◽  
Jiye Zhang ◽  
Hong Li

Author(s):  
Sunil Kumar Sharma ◽  
Anil Kumar

In a railway vehicle, vibrations are generated due to the interaction between wheel and track. To evaluate the effect of vibrations on the ride quality and comfort of a passenger vehicle, the Sperling's ride index method is frequently adopted. This paper focuses on the feasibility of improving the ride quality and comfort of railway vehicles using semiactive secondary suspension based on magnetorheological fluid dampers. Equations of vertical, pitch and roll motions of car body and bogies are developed for an existing rail vehicle. Moreover, nonlinear stiffness and damping functions of passive suspension system are extracted from experimental data. In view of improvement in the ride quality and comfort of the rail vehicle, a magnetorheological damper is integrated in the secondary vertical suspension system. Parameters of the magnetorheological damper depend on current, amplitude and frequency of excitations. Three semi-active suspension strategies with magnetorheological damper are analysed at different running speeds and for periodic track irregularity. The performance indices calculated at different semi-active strategies are juxtaposed with the nonlinear passive suspension system. Simulation results establish that magnetorheological damper strategies in the secondary suspension system of railway vehicles reduce the vertical vibrations to a great extent compared to the existing passive system. Moreover, they lead to improved ride quality and passenger comfort.


2020 ◽  
pp. 1-30
Author(s):  
I. Mendia-Garcia ◽  
N. Gil-Negrete Laborda ◽  
A. Pradera-Mallabiabarrena ◽  
M. Berg

2014 ◽  
Vol 1016 ◽  
pp. 279-286
Author(s):  
Said Boukerroum ◽  
Nacer Hamzaoui

The present work consists of an experimental performances analysis of a suspension system with two degrees of freedom governed by a semi-active modified continuously variable command (MCVC) law. The internal dynamics of Magneto-Rheological (MR) damper used in this study is highlighted by the modified Bouc-Wen model in the mathematical modelling of the secondary suspension system. After the dynamic characterization of the MR damper, a comparison of performance obtained by this control scheme is carried out from the responses calculated using a numerical model and measured experimentally from a test bench of a semi-active suspension incorporating an MR damper and controlled by a dSPACE control chain. For a better representativeness of the modified Bouc-Wen numerical model, a rapprochement between the calculated and measured responses for the same dynamic characteristics of the test bench is possible by adjusting the most influential parameters of the numerical model. Through better management of the suspension during the low speeds, the modified Bouc-Wen model is more representative of the real behaviour of the MR damper, given its sensitivity at these low speeds during transitions between compression and expansion phases of the damper.


2015 ◽  
Vol 809-810 ◽  
pp. 1031-1036
Author(s):  
Mădălina Dumitriu ◽  
Camil Crăciun

The paper focuses on evaluating the stability of the railway vehicle during running on a track horizontal irregularities and investigating the possibilities to improve the dynamic behavior on a lateral direction. The evaluation method for the stability relies on the homologation specifications of the railway vehicles from the perspective of the dynamic behavior included in the UIC 518 Leaflet, where the lateral accelerations of the bogies represent evaluation units for the stability. The lateral accelerations are derived from numerical simulations, developed on a non-linear complex model of the vehicle/track system, where the vehicle is described by a mechanical system with 21 degrees of freedom. The results thus presented outline the possibilities of improving the vehicle stability by adopting the best values of the lateral damping of the secondary suspension or of the lateral stiffness of the primary suspension that will lead to the minimizing of the lateral acceleration in a bogie.


Sign in / Sign up

Export Citation Format

Share Document