Design and Control of Cylindrical Linear Series Elastic Actuator

2019 ◽  
Vol 36 (1) ◽  
pp. 95-98
Author(s):  
KwangJin Lee ◽  
SangRyong Lee ◽  
Hak Yi
Author(s):  
Chenglong Qian ◽  
Aibin Zhu ◽  
Jiyuan Song ◽  
Huang Shen ◽  
Xiaodong Zhang ◽  
...  

Author(s):  
Seung Ho Lee ◽  
Hyeok Jin Lee ◽  
Kyeong Ha Lee ◽  
Ji Min Baek ◽  
Ja Choon Koo

Abstract Recently, Series Elastic Actuator (SEA) has been popularly used as a torque sensor thanks to its notable ability to calibrate the relation between torque and displacement. It has been applied to many robotic applications and used in a various industrial automation fields. However, most of the current SEAs have nonlinear torque-displacement characteristics which could not be easily alleviated. In order to be utilized as a feasible torque sensor, the wide linearity of a SEA in torque-displacement relationship is not an option. Also, adjustable compliance is needed to implement a mechanism with different stiffness, depending on the various cases where SEA can be applied. In this paper, we designed a Variable Stiffness Linear Series Elastic Actuator (VLSEA) mechanism that can achieve variable stiffness with a linear relationship between torque and displacement. At first, a design with a four-bar link was proposed for linear relations, but it was difficult to implement variable stiffness. We modified the design using the Scotch Yoke mechanisms for the model to have variable stiffness. Simulation of the designed model then verifies that the model can properly implement linearity and variable stiffness.


Author(s):  
M. SHYSH ◽  
T. MRECH ◽  
U. SCHMUCKER ◽  
A. TELESH

Author(s):  
Ehsan Basafa ◽  
Hassan Salarieh ◽  
Aria Alasty

Series Elastic Actuators are force actuators with applications in robotics and biomechanics. In linear Series Elastic Actuators, a large force bandwidth requires a stiff sensor (spring), but the output impedance puts an upper limit on this parameter, therefore selecting the proper spring is difficult in these actuators. In this paper, Series Elastic Actuator is modeled with a nonlinear, stiffening spring and controlled using the Gain Scheduling method. Simulations show that both linear and nonlinear models have similar force bandwidths, but the nonlinear one shows much lower output impedance. Hence, the choice of spring for actuator design is an easier task than that of the linear model. Also, as a force-augmenting device for the knee joint in normal human gait, the nonlinear model acts better in simulations.


Sign in / Sign up

Export Citation Format

Share Document