scholarly journals Effect of SCB Liquid Manure Application in Pear Orchard Managed by Cover Crop System on Tree Growth, Potential Nutrient Recovery and Soil Physicochemical Properties

2012 ◽  
Vol 45 (5) ◽  
pp. 779-786 ◽  
Author(s):  
Seong-Eun Lee ◽  
Jin-Myeon Park ◽  
Dong-Geun Choi
2013 ◽  
Vol 46 (5) ◽  
pp. 322-326 ◽  
Author(s):  
Seong Eun Lee ◽  
Jin Myeon Park ◽  
Jae Seung Noh ◽  
Tae Jun Lim ◽  
Dong Geun Choi

2011 ◽  
Vol 346 (1-2) ◽  
pp. 385-397 ◽  
Author(s):  
Randol Villalobos-Vega ◽  
Guillermo Goldstein ◽  
Mundayatan Haridasan ◽  
Augusto C. Franco ◽  
Fernando Miralles-Wilhelm ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2617
Author(s):  
Alicja Szatanik-Kloc ◽  
Justyna Szerement ◽  
Agnieszka Adamczuk ◽  
Grzegorz Józefaciuk

Thousands of tons of zeolitic materials are used yearly as soil conditioners and components of slow-release fertilizers. A positive influence of application of zeolites on plant growth has been frequently observed. Because zeolites have extremely large cation exchange capacity, surface area, porosity and water holding capacity, a paradigm has aroused that increasing plant growth is caused by a long-lasting improvement of soil physicochemical properties by zeolites. In the first year of our field experiment performed on a poor soil with zeolite rates from 1 to 8 t/ha and N fertilization, an increase in spring wheat yield was observed. Any effect on soil cation exchange capacity (CEC), surface area (S), pH-dependent surface charge (Qv), mesoporosity, water holding capacity and plant available water (PAW) was noted. This positive effect of zeolite on plants could be due to extra nutrients supplied by the mineral (primarily potassium—1 ton of the studied zeolite contained around 15 kg of exchangeable potassium). In the second year of the experiment (NPK treatment on previously zeolitized soil), the zeolite presence did not impact plant yield. No long-term effect of the zeolite on plants was observed in the third year after soil zeolitization, when, as in the first year, only N fertilization was applied. That there were no significant changes in the above-mentioned physicochemical properties of the field soil after the addition of zeolite was most likely due to high dilution of the mineral in the soil (8 t/ha zeolite is only ~0.35% of the soil mass in the root zone). To determine how much zeolite is needed to improve soil physicochemical properties, much higher zeolite rates than those applied in the field were studied in the laboratory. The latter studies showed that CEC and S increased proportionally to the zeolite percentage in the soil. The Qv of the zeolite was lower than that of the soil, so a decrease in soil variable charge was observed due to zeolite addition. Surprisingly, a slight increase in PAW, even at the largest zeolite dose (from 9.5% for the control soil to 13% for a mixture of 40 g zeolite and 100 g soil), was observed. It resulted from small alterations of the soil macrostructure: although the input of small zeolite pores was seen in pore size distributions, the larger pores responsible for the storage of PAW were almost not affected by the zeolite addition.


CATENA ◽  
2021 ◽  
Vol 202 ◽  
pp. 105284
Author(s):  
Yafu Zhang ◽  
Jinman Wang ◽  
Yu Feng

1996 ◽  
Vol 76 (2) ◽  
pp. 153-164 ◽  
Author(s):  
B. J. Zebarth ◽  
J. W. Paul ◽  
O. Schmidt ◽  
R. McDougall

Manure-N availability must be known in order to design application practices that maximize the nutrient value of the manure while minimizing adverse environmental impacts. This study determined the effect of time and rate of liquid manure application on silage corn yield and N utilization, and residual soil nitrate at harvest, in south coastal British Columbia. Liquid dairy or liquid hog manure was applied at target rates of 0, 175, 350 or 525 kg N ha−1, with or without addition of 100 kg N ha−1 as inorganic fertilizer, at two sites in each of 2 yr. Time of liquid-dairy-manure application was also tested at two sites in each of 2 yr with N-application treatments of: 600 kg N ha−1 as manure applied in spring; 600 kg N ha−1 as manure applied in fall; 300 kg N ha−1 as manure applied in each of spring and fall; 200 kg N ha−1 applied as inorganic fertilizer in spring; 300 kg N ha−1 as manure plus 100 kg N ha−1 as inorganic fertilizer applied in spring; and a control that received no applied N. Fall-applied manure did not increase corn yield or N uptake in the following growing season. At all sites, maximum yield was attained using manure only. Selection of proper spring application rates for manure and inorganic fertilizer were found to be equally important in minimizing residual soil nitrate at harvest. Apparent recovery of applied N in the crop ranged from 0 to 33% for manure and from 18 to 93% for inorganic fertilizer. Key words: N recovery, manure management


Sign in / Sign up

Export Citation Format

Share Document