scholarly journals Small Molecule Inhibitors of MDM2-p53 and MDMX-p53 Interactions as New Cancer Therapeutics

Biodiscovery ◽  
2013 ◽  
pp. 4 ◽  
Author(s):  
Yujun Zhao ◽  
Denzil Bernard ◽  
Shaomeng Wang
2011 ◽  
Vol 18 (6) ◽  
pp. 759-771 ◽  
Author(s):  
Zhihong Chen ◽  
Lora W Forman ◽  
Kenneth A Miller ◽  
Brandon English ◽  
Asami Takashima ◽  
...  

The concept of targeting cancer therapeutics toward specific mutations or abnormalities in tumor cells, which are not found in normal tissues, has the potential advantages of high selectivity for the tumor and correspondingly low secondary toxicities. Many human malignancies display activating mutations in the Ras family of signal-transducing genes or over-activity of p21Ras-signaling pathways. Carcinoid and other neuroendocrine tumors have been similarly demonstrated to have activation of Ras signaling directly by mutations in Ras, indirectly by loss of Ras-regulatory proteins, or via constitutive activation of upstream or downstream effector pathways of Ras, such as growth factor receptors or PI3-kinase and Raf/mitogen-activated protein kinases. We previously reported that aberrant activation of Ras signaling sensitizes cells to apoptosis when the activity of the PKCδ isozyme is suppressed and that PKCδ suppression is not toxic to cells with normal levels of p21Rassignaling. We demonstrate here that inhibition of PKCδ by a number of independent means, including genetic mechanisms (shRNA) or small-molecule inhibitors, is able to efficiently and selectively repress the growth of human neuroendocrine cell lines derived from bronchopulmonary, foregut, or hindgut tumors. PKCδ inhibition in these tumors also efficiently induced apoptosis. Exposure to small-molecule inhibitors of PKCδ over a period of 24 h is sufficient to significantly suppress cell growth and clonogenic capacity of these tumor cell lines. Neuroendocrine tumors are typically refractory to conventional therapeutic approaches. This Ras-targeted therapeutic approach, mediated through PKCδ suppression, which selectively takes advantage of the very oncogenic mutations that contribute to the malignancy of the tumor, may hold potential as a novel therapeutic modality.


2019 ◽  
Author(s):  
Jacob Bellamy ◽  
Marianna Szemes ◽  
Zsombor Melegh ◽  
Anthony Dallosso ◽  
Madhu Kollareddy ◽  
...  

AbstractTargeted inhibition of proteins modulating epigenetic changes is an increasingly important priority in cancer therapeutics, and many small molecule inhibitors are currently being developed. In the case of neuroblastoma (NB), a paediatric solid tumour with a paucity of intragenic mutations, epigenetic deregulation may be especially important. In this study we validate the histone methyltransferase G9a/EHMT2 as being associated with indicators of poor prognosis in NB. Immunological analysis of G9a protein shows it to be more highly expressed in NB cell-lines with MYCN amplification, which is a primary determinant of dismal outcome in NB patients. Furthermore, G9a protein in primary tumours is expressed at higher levels in poorly differentiated/undifferentiated NB, and correlates with high EZH2 expression, a known co-operative oncoprotein in NB. Our functional analyses demonstrate that siRNA-mediated G9a depletion inhibits cell growth in all NB cell lines, but, strikingly, only triggers apoptosis in NB cells with MYCN amplification, suggesting a synthetic lethal relationship between G9a and MYCN. This pattern of sensitivity is also evident when using small molecule inhibitors of G9a, UNC0638 and UNC0642. The increased efficacy of G9a inhibition in the presence of MYCN-overexpression is also demonstrated in the SHEP-21N isogenic model with tet-regulatable MYCN. Finally, using RNA sequencing, we identify several potential tumour suppressor genes that are reactivated by G9a inhibition in NB, including the CLU, FLCN, AMHR2 and AKR1C1-3. Together, our study underlines the under-appreciated role of G9a in NB, especially in MYCN-amplified tumours.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3079
Author(s):  
Gabriel LaPlante ◽  
Wei Zhang

The ubiquitin-proteasome system (UPS) is a critical regulator of cellular protein levels and activity. It is, therefore, not surprising that its dysregulation is implicated in numerous human diseases, including many types of cancer. Moreover, since cancer cells exhibit increased rates of protein turnover, their heightened dependence on the UPS makes it an attractive target for inhibition via targeted therapeutics. Indeed, the clinical application of proteasome inhibitors in treatment of multiple myeloma has been very successful, stimulating the development of small-molecule inhibitors targeting other UPS components. On the other hand, while the discovery of potent and selective chemical compounds can be both challenging and time consuming, the area of targeted protein degradation through utilization of the UPS machinery has seen promising developments in recent years. The repertoire of proteolysis-targeting chimeras (PROTACs), which employ E3 ligases for the degradation of cancer-related proteins via the proteasome, continues to grow. In this review, we will provide a thorough overview of small-molecule UPS inhibitors and highlight advancements in the development of targeted protein degradation strategies for cancer therapeutics.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii407-iii408
Author(s):  
Gemma Llargués-Sistac ◽  
Janet Lindsey ◽  
Shanel Swartz ◽  
Matthew Selby ◽  
Alaide Morcavallo ◽  
...  

Abstract Group 3 medulloblastoma (MBGroup3) is a highly aggressive tumour characterised by MYC amplification and elevated expression (17% of MBGroup3). MYC amplification in MBGroup3 confers a dismal prognosis using standard therapies, and there is an urgent unmet need for novel therapeutic approaches. The identification and targeting of MYC’s biological dependencies thus represents a promising strategy to treat MYC-MBGroup3 tumours. Three independent isogenic MYC-regulable MBGroup3 human cell-based models, in which elevated MYC expression can be directly down-regulated by doxycycline-inducible shRNAs, were developed and used initially to establish MYC-dependent growth of each model. Our novel models were then used to investigate MYC-dependent drug sensitivity, by characterising responses to a panel of candidate cancer therapeutics and small molecule inhibitors, including a high-throughput compound screen of >500 established/clinically-relevant small molecule inhibitors. This approach identified several specific, consistently observed, druggable MYC-dependencies (e.g. cell cycle regulators, DNA-damage response controllers, mitotic control machinery) with potential for the development of treatments against MYC-MBGroup3 tumours. PLK1, CHK1 and AURK were identified as prime candidate targets with consistent MYC-dependent response profiles. Subsequent validation of each candidate, by genetic and pharmacological target inhibition, confirmed their MYC-dependent effects, associated with downregulation of MYC and established target-dependent pharmacodynamic biomarkers/pathways. Results were consistent across all of our MBGroup3 models. In summary, our novel models reveal druggable MYC-associated dependencies as a feature of MBGroup3. Our findings support the development of PLK1, CHK1 and AURK inhibition as therapeutic approaches against MYC-dependent MBGroup3. Future work is now essential to validate our findings in vivo, to support the design of future clinical trials.


Sign in / Sign up

Export Citation Format

Share Document