scholarly journals Evaluation of Fatigue Damage for Wind Turbine Blades Using Acoustic Emission

2015 ◽  
Vol 35 (3) ◽  
pp. 179-184
Author(s):  
Hyun-Sup Jee ◽  
No-Hoe Ju ◽  
Cheal Ho So ◽  
Jong-Kyu Lee
Author(s):  
Nikolaos K. Tsopelas ◽  
Dimitrios G. Papasalouros ◽  
Athanasios A. Anastasopoulos ◽  
Dimitrios A. Kourousis ◽  
Jason W. Dong

Author(s):  
P. A. Joosse ◽  
M. J. Blanch ◽  
A. G. Dutton ◽  
D. A. Kouroussis ◽  
T. P. Philippidis ◽  
...  

Wind turbine blade certification tests, comprising a static test, a fatigue test, and finally a residual strength test, often involve sudden audible cracking sounds from somewhere within the blade, without the operators being able to locate the noise source, or to determine whether damage (minor or major) has occurred. A current EC-funded research project is looking at the possibility of using acoustic emission (AE) monitoring during testing of fibre composite blades to detect such events and assess the blade condition. AE can both locate and characterise damage processes in blades, starting with non-audible signals occurring due to damage propagation at relatively low loads. The test methodology is discussed in the context of the blade certification procedure and results are presented from a series of static and fatigue blade tests to failure in the laboratory. Inferences are drawn about small differences in the manufacture of the nominally identical blades and conclusions are presented for the application of the methodology.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Peter K. Fossum ◽  
Lars Frøyd ◽  
Ole G. Dahlhaug

Aeroelastic design and fatigue analysis of large utility-scale wind turbine blades have been performed to investigate the applicability of different types of materials in a fatigue environment. The blade designs used in the study are developed according to an iterative numerical design process for realistic wind turbine blades, and the software tool FAST is used for advanced aero-servo-elastic simulations. Elementary beam theory is used to calculate strain time series from these simulations, and the material fatigue is evaluated using established methods. Following wind turbine design standards, the fatigue evaluation is based on a turbulent wind load case. Fatigue damage is estimated based on 100% availability and a site-specific annual wind distribution. Rainflow cycle counting and Miner's sum for cumulative damage prediction is used together with constant life diagrams tailored to actual material S-N data. Material properties are based on 95% survival probability, 95% confidence level, and additional material safety factors to maintain conservative results. Fatigue performance is first evaluated for a baseline blade design of the 10 MW NOWITECH reference wind turbine. Results show that blade damage is dominated by tensile stresses due to poorer tensile fatigue characteristics of the shell glass fiber material. The interaction between turbulent wind and gravitational fluctuations is demonstrated to greatly influence the damage. The need for relevant S-N data to reliably predict fatigue damage accumulation and to avoid nonconservative conclusions is demonstrated. State-of-art wind turbine blade trends are discussed and different design varieties of the baseline blade are analyzed in a parametric study focusing on fatigue performance and material costs. It is observed that higher performance material is more favorable in the spar-cap construction of large blades which are designed for lower wind speeds.


AIAA Journal ◽  
2021 ◽  
pp. 1-11
Author(s):  
Nobuo Namura ◽  
Kazuo Muto ◽  
Yosuke Ueki ◽  
Ryo Ueta ◽  
Norio Takeda

Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2340 ◽  
Author(s):  
Ying Wang ◽  
Lars Mikkelsen ◽  
Grzegorz Pyka ◽  
Philip Withers

Understanding the fatigue damage mechanisms in composite materials is of great importance in the wind turbine industry because of the very large number of loading cycles rotor blades undergo during their service life. In this paper, the fatigue damage mechanisms of a non-crimp unidirectional (UD) glass fibre reinforced polymer (GFRP) used in wind turbine blades are characterised by time-lapse ex-situ helical X-ray computed tomography (CT) at different stages through its fatigue life. Our observations validate the hypothesis that off-axis cracking in secondary oriented fibre bundles, the so-called backing bundles, are directly related to fibre fractures in the UD bundles. Using helical X-ray CT we are able to follow the fatigue damage evolution in the composite over a length of 20 mm in the UD fibre direction using a voxel size of (2.75 µm)3. A staining approach was used to enhance the detectability of the narrow off-axis matrix and interface cracks, partly closed fibre fractures and thin longitudinal splits. Instead of being evenly distributed, fibre fractures in the UD bundles nucleate and propagate locally where backing bundles cross-over, or where stitching threads cross-over. In addition, UD fibre fractures can also be initiated by the presence of extensive debonding and longitudinal splitting, which were found to develop from debonding of the stitching threads near surface. The splits lower the lateral constraint of the originally closely packed UD fibres, which could potentially make the composite susceptible to compressive loads as well as the environment in service. The results here indicate that further research into the better design of the positioning of stitching threads, and backing fibre cross-over regions is required, as well as new approaches to control the positions of UD fibres.


Author(s):  
N Tsopelas ◽  
D Kourousis ◽  
I Ladis ◽  
A Anastasopoulos ◽  
D Lekou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document