EMG evaluation of fatigue during isometric contractions in female rowers

2013 ◽  
Vol 4 (2) ◽  
pp. 7-12
Author(s):  
Selda Uzun ◽  
Omer Sayli ◽  
Yasar Tatar ◽  
Nusret Ramazonoglu ◽  
Birol Cotuk
2020 ◽  
pp. 1-8
Author(s):  
Dasom Oh ◽  
Wootaek Lim

BACKGROUND: Although the medial and lateral hamstrings are clearly distinct anatomically and have different functions in the transverse plane, they are often considered as one muscle during rehabilitation. OBJECTIVE: The purpose of the study was to compare the electromyographic (EMG) activity between the prone position and the supine position during maximal isometric contraction and to additionally confirm the effect of submaximal isometric contractions on EMG activity of medial and lateral hamstrings, and force. METHODS: In the prone position, EMG activities of the long head of biceps femoris (BFLH) and semitendinosus (ST) were measured during the maximal isometric contraction. In the supine position, hip extension force with EMG activity were measured during the maximal and the submaximal isometric contractions. RESULTS: EMG activity in the prone position was significantly decreased in the supine position. In the supine position, there was a significant difference between the BFLH and ST during the maximal isometric contraction, but not during the submaximal isometric contractions. CONCLUSIONS: The dependence on the hamstrings could be relatively lower during hip extensions. When the medial and lateral hamstrings are considered separately, the lateral hamstrings may show a more active response, with increased muscle length, in clinical practice.


1988 ◽  
Vol 255 (4) ◽  
pp. C536-C542 ◽  
Author(s):  
J. S. Walker ◽  
I. R. Wendt ◽  
C. L. Gibbs

Heat production, unloaded shortening velocity (Vus), and load-bearing capacity (LBC) were studied in the isolated rat anococcygeus muscle during isometric contractions at 27 degrees C. The relation between the total suprabasal heat produced and the stress-time integral for isometric contractions of various durations was curvilinear, demonstrating a decreasing slope as contractile duration increased. The rate of heat production at 600 s was approximately 68% of the peak value of 6.55 mW/g that occurred at 10 s. At the same time, force rose from a mean of 92 mN/mm2 at 10 s to a value of 140 mN/mm2 at 600 s. This produced a nearly threefold increase in the economy of force maintenance. The decline in the rate of heat production was accompanied by a decline in Vus from 0.56 Lo/s at 10 s to 0.28 Lo/s at 600 s, where Lo is the length for optimal force development. This suggests the fall in the rate of heat production was caused, at least in part, by a slowing of cross-bridge kinetics. The ratio of LBC to developed tension at 10 s was not significantly different from the ratio at 600 s, suggesting that the increase in tension was due to an increased number of attached cross bridges. The decline in heat production, therefore, appears contradictory, since an increased number of attached cross bridges would predict an increased rate of energy expenditure. The observations can be reconciled if either 1) the increase in force is caused by a progressive increase in the attachment time of a constant number of cross bridges that cycle at a lower frequency or 2) the decline in energy expenditure caused by the slowing of cross-bridge cycling is sufficient to mask the increase caused by the recruitment of additional cross bridges.


2006 ◽  
Vol 178 (3) ◽  
pp. 285-295 ◽  
Author(s):  
Evangelos A. Christou ◽  
Thorsten Rudroff ◽  
Joel A. Enoka ◽  
François Meyer ◽  
Roger M. Enoka

2008 ◽  
Vol 105 (3) ◽  
pp. 805-810 ◽  
Author(s):  
C. Couppé ◽  
M. Kongsgaard ◽  
P. Aagaard ◽  
P. Hansen ◽  
J. Bojsen-Moller ◽  
...  

The purpose of this study was to examine patellar tendon (PT) size and mechanical properties in subjects with a side-to-side strength difference of ≥15% due to sport-induced loading. Seven elite fencers and badminton players were included. Cross-sectional area (CSA) of the PT obtained from MRI and ultrasonography-based measurement of tibial and patellar movement together with PT force during isometric contractions were used to estimate mechanical properties of the PT bilaterally. We found that distal tendon and PT, but not mid-tendon, CSA were greater on the lead extremity compared with the nonlead extremity (distal: 139 ± 11 vs. 116 ± 7 mm2; mid-tendon: 85 ± 5 vs. 77 ± 3 mm2; proximal: 106 ± 7 vs. 83 ± 4 mm2; P < 0.05). Distal tendon CSA was greater than proximal and mid-tendon CSA on both the lead and nonlead extremity ( P < 0.05). For a given common force, stress was lower on the lead extremity (52.9 ± 4.8 MPa) compared with the nonlead extremity (66.0 ± 8.0 MPa; P < 0.05). PT stiffness was also higher in the lead extremity (4,766 ± 716 N/mm) compared with the nonlead extremity (3,494 ± 446 N/mm) ( P < 0.05), whereas the modulus did not differ (lead 2.27 ± 0.27 GPa vs. nonlead 2.16 ± 0.28 GPa) at a common force. These data show that a habitual loading is associated with a significant increase in PT size and mechanical properties.


1994 ◽  
Vol 266 (1) ◽  
pp. H147-H155 ◽  
Author(s):  
W. R. Dunn ◽  
G. C. Wellman ◽  
J. A. Bevan

We have compared the responsiveness of rabbit mesenteric resistance arteries with agonists under isometric and isobaric conditions. When pressurized (60 mmHg), arteries spontaneously reduced their diameter by 18.1%. An equivalent isometric stress did not generate force in a “wire” myograph. Subsequently, much higher concentrations of norepinephrine (NE) and histamine were required to cause isometric contractions than were needed to reduce vascular diameter of pressurized vessels, whereas angiotensin II produced a maintained response only in pressurized arteries. Reducing transmural pressure to 20 mmHg abolished pressure-induced myogenic tone and decreased arterial sensitivity to NE. Under isometric conditions, partial depolarization with KCl increased sensitivity to NE and histamine to within the concentration range effective in pressurized vessels and also "revealed" responses to angiotensin II. The membrane potential of the vascular smooth muscle cells under partially depolarized conditions was similar to that found in vivo and in vessels studied isobarically. These observations demonstrate a fundamental interaction between pressure-induced myogenic tone and the sensitivity of resistance arteries to vasoactive stimuli. This influence was mimicked in isometrically mounted vessels by partial depolarization, indicating a possible pivotal role for membrane potential in determining the reactivity of the resistance vasculature.


Sign in / Sign up

Export Citation Format

Share Document