Using Virtualization Technique to Increase Security and Reduce Energy Consumption in Cloud Computing

2014 ◽  
Vol 4 (2) ◽  
pp. 25-30
Author(s):  
Hamid Banirostam ◽  
Alireza Hedayati ◽  
Ahmad Khadem Zadeh
2015 ◽  
Vol 8 (1) ◽  
pp. 206-210 ◽  
Author(s):  
Yu Junyang ◽  
Hu Zhigang ◽  
Han Yuanyuan

Current consumption of cloud computing has attracted more and more attention of scholars. The research on Hadoop as a cloud platform and its energy consumption has also received considerable attention from scholars. This paper presents a method to measure the energy consumption of jobs that run on Hadoop, and this method is used to measure the effectiveness of the implementation of periodic tasks on the platform of Hadoop. Combining with the current mainstream of energy estimate formula to conduct further analysis, this paper has reached a conclusion as how to reduce energy consumption of Hadoop by adjusting the split size or using appropriate size of workers (servers). Finally, experiments show the effectiveness of these methods as being energy-saving strategies and verify the feasibility of the methods for the measurement of periodic tasks at the same time.


Author(s):  
N. Chandrakala ◽  
B. Thirumala Rao

Cloud services help individuals and organization to use data that are managed by third parties or another person at remote locations. With the increase in the development of cloud computing environment, the security has become the major concern that has been raised more consistently in order to move data and applications to the cloud as individuals do not trust the third party cloud computing providers with their private and most sensitive data and information. This paper presents, the migration of virtual machine to improve the security in cloud computing. Virtual machine (VM) is an emulation of a particular computer system. In cloud computing, virtual machine migration is a useful tool for migrating operating system instances across multiple physical machines. It is used to load balancing, fault management, low-level system maintenance and reduce energy consumption. Virtual machine (VM) migration is a powerful management technique that gives data center operators the ability to adapt the placement of VMs in order to better satisfy performance objectives, improve resource utilization and communication locality, achieve fault tolerance, reduce energy consumption, and facilitate system maintenance activities. In the migration based security approach, proposed the placement of VMs can make enormous difference in terms of security levels. On the bases of survivability analysis of VMs and Discrete Time Markov Chain (DTMC) analysis, we design an algorithm that generates a secure placement arrangement that the guest VMs can moves before succeeds the attack.


Author(s):  
Candy Pang ◽  
Abram Hindle ◽  
Bram Adams ◽  
Ahmed E Hassan

Traditionally, programmers have received a wide range of training on programming languages and methodologies, but rarely about software energy consumption. Yet, the popularity of mobile devices and cloud computing require increased awareness about software energy consumption. On a mobile device, computation is often limited by the battery life. Under the demands of cloud computing, data centers struggle to reduce energy consumption through vir- tualization and data center infrastructure management (DCIM) systems. Efficient energy consumption of software is increasingly becoming an important non-functional requirement for programmers. However, are programmers knowledgeable enough about software energy consumption? Do programmers base their implementation decision on popular beliefs? In this article, we survey over 100 programmers for their knowledge of software energy con- sumption. We find that programmers have limited knowledge about energy efficiency, lack the knowledge about the best practice to reduce energy consumption of software, and are often unsure about how software consumes energy. Education about the importance of energy effective software will benefit the programmers. Our results highlight the need for training about energy consumption and efficiency.


Author(s):  
Candy Pang ◽  
Abram Hindle ◽  
Bram Adams ◽  
Ahmed E Hassan

Traditionally, programmers have received a wide range of training on programming languages and methodologies, but rarely about software energy consumption. Yet, the popularity of mobile devices and cloud computing require increased awareness about software energy consumption. On a mobile device, computation is often limited by the battery life. Under the demands of cloud computing, data centers struggle to reduce energy consumption through vir- tualization and data center infrastructure management (DCIM) systems. Efficient energy consumption of software is increasingly becoming an important non-functional requirement for programmers. However, are programmers knowledgeable enough about software energy consumption? Do programmers base their implementation decision on popular beliefs? In this article, we survey over 100 programmers for their knowledge of software energy con- sumption. We find that programmers have limited knowledge about energy efficiency, lack the knowledge about the best practice to reduce energy consumption of software, and are often unsure about how software consumes energy. Education about the importance of energy effective software will benefit the programmers. Our results highlight the need for training about energy consumption and efficiency.


Author(s):  
Candy Pang ◽  
Abram Hindle ◽  
Bram Adams ◽  
Ahmed E Hassan

Traditionally, programmers have received a wide range of training on programming languages and methodologies, but rarely about software energy consumption. Yet, the popularity of mobile devices and cloud computing require increased awareness about software energy consumption. On a mobile device, computation is often limited by the battery life. Under the demands of cloud computing, data centers struggle to reduce energy consumption through vir- tualization and data center infrastructure management (DCIM) systems. Efficient energy consumption of software is increasingly becoming an important non-functional requirement for programmers. However, are programmers knowledgeable enough about software energy consumption? Do programmers base their implementation decision on popular beliefs? In this article, we survey over 100 programmers for their knowledge of software energy con- sumption. We find that programmers have limited knowledge about energy efficiency, lack the knowledge about the best practice to reduce energy consumption of software, and are often unsure about how software consumes energy. Education about the importance of energy effective software will benefit the programmers. Our results highlight the need for training about energy consumption and efficiency.


Sign in / Sign up

Export Citation Format

Share Document