A Study on Curing Methods for Concrete Pavement on Early Strength Development in Cool Weather Condition

2017 ◽  
Vol 19 (3) ◽  
pp. 11-18
Author(s):  
SungWoo Ryu ◽  
JinHwan Kim ◽  
SeungHo Hong ◽  
JeJin Park
Author(s):  
Yoon-Ho Cho ◽  
Terry Dossey ◽  
B. Frank Mccullough

The effect of coarse aggregate on pavement performance has been attributed to the volume of aggregate used in pavement construction. The different patterns of crack development for limestone (LS) and siliceous river gravel (SRG) are a typical example of aggregate-induced variable performance in continuously reinforced concrete pavement (CRCP). An attempt was made to find a reasonable solution for pavements with SRG. As a way to solve the performance problem observed from the SRG pavement, a blended aggregates mixture was suggested. Laboratory and field tests were performed to check the feasibility of their application in pavements. From the laboratory test, a 50:50 blending ratio was suggested after considering the effect on tensile strength and thermal coefficient of expansion. Field test sections were also constructed to verify previous performance observations for the two aggregates and to provide performance data for new variables such as blended aggregates and special curing methods. Unexpectedly, the blended mixture did not improve the performance of SRG pavement; rather it experienced worse cracking than SRG alone. A controlled experiment with additional field test sections is needed to verify or disprove this finding. The only definitive finding was that selection of aggregate in the concrete pavement is a vital consideration for the design of the pavement. The CRCP8 analytical program reasonably predicted crack spacing for both SRG and LS pavements, predicting mean crack spacing of 0.99 m (3.25 ft) for SRG and 1.98 m (6.41 ft) for the limestone. These values are somewhat below the actual spacing observed at 100 days. Data collected after the first winter period will be required to calibrate the program.


2014 ◽  
Vol 584-586 ◽  
pp. 1551-1557
Author(s):  
Noor Azline Mohd Nasir ◽  
M.J. McCarthy

The article reports a laboratory experimental programme that investigated effect of metakaolin on the early strength of concrete made with ternary combinations of Portland cement (CEM I) with ground granulated blast slag (GGBS) and metakaolin (MK). The various level of cement combinations (65%CEM I+30%GGBS+5%MK, 45%CEM I+45%GGBS+10%MK and 45%CEM I+40%GGBS+15%MK) was examined in comparison to CEM I and equivalent GGBS binary concretes for up to 28 days. Results show that the reduction in early strength is greater with the higher cement replacement level. However, the ternary concrete containing 15%MK has minor increase in early strength compared to those with 10%MK but a significant increase in strength is examined at later age (28 days). It is concluded that the presence of MK compensates the adverse effect of GGBS at early strength development and improves the strength at later ages.


2015 ◽  
Vol 76 (14) ◽  
Author(s):  
Mohd Ibrahim Mohd Yusak ◽  
Ramadhansyah Putra Jaya ◽  
Mohd Rosli Hainin ◽  
Che Ros Ismail ◽  
Mohd Haziman Wan Ibrahim

Porous concrete pavement has been used in some countries as a solution to environmental problems. Contrary to conventional concrete pavement, there is still lack of knowledge in some areas of production and performance of porous concrete pavement. One of the issue concern is curing conditions. These greatly affect the performance of porous concrete pavement. This paper elaborates the experimental results examining the influence of curing method and makes a comparison between five different curing methods on the strength of porous concrete pavement specimens. The properties analyzed include compressive strength, tensile splitting strength and flexural strength. The experimental results indicate that the different curing methods give a different effect to concrete strength. Based on the results obtained in this experiment, curing method by using polyethylene bag promise a good result and better performance to porous concrete pavement specimen strength.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2590 ◽  
Author(s):  
Karol Federowicz ◽  
Maria Kaszyńska ◽  
Adam Zieliński ◽  
Marcin Hoffmann

Technological developments in construction have led to an increase in the use of 3D modelling using CAD environments. The popularity of this approach has increased in tandem with developments in industry branches which use 3D printers to print concrete based printing materials in construction, as these allow freedom in shaping the dimensions of supporting elements. One of the biggest challenges for researchers working on this highly innovative technology is that of cement material shrinkage. This article presents the findings of research on an original method of measuring deformations caused by shrinkage in 3D-printed concrete elements. It also discusses the results of tests on base mixes, as well as comparisons between the influence of internal and external curing methods on the development of deformations and their final outcomes. Furthermore, the article discusses differences between deformations formed after seven days of hardening without curing, with those which occur when two common, traditional concrete curing methods are used: foil insulation and shrinkage reducing admixtures. In addition, the article examines the effects of internal curing on the 1, 7, 14, 21 and 28 day mechanical properties of concrete, in accordance with EN 196-1 and EN 12390-2. Studies have shown that the optimal amount of shrinkage reducing admixtures is 4% (in relation to the mass of cement), resulting in a reduction in total shrinkage of 23%. The use of a shrinkage reducing admixture in 3D-printed concrete does not affect their strength after 28 days, but slows the strength development during the first 7 days.


2020 ◽  
Vol 9 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Parameshwar N Hiremath ◽  
H P Thanu ◽  
S N Basavana Gowda ◽  
Sharan Kumar Goudar

Sign in / Sign up

Export Citation Format

Share Document