Separation of hydrophobic organic compound from surfactant solutions with activated carbon in a fixed bed

2013 ◽  
Vol 68 (10) ◽  
pp. 2294-2300 ◽  
Author(s):  
Jianfei Liu ◽  
Jiajun Chen ◽  
Lin Jiang ◽  
Cheng Chen

The adsorption behavior of phenanthrene (PHE) in Triton X-100 (TX100) solutions with fixed activated carbon (AC) bed was studied to recover the surfactant. The effect of various parameters like bed depths, flow rates, influent TX100 concentration, and influent PHE concentration were investigated. The breakthrough time of both TX100 and PHE increased with the increase of bed height and decrease of flow rate and influent concentration. In the case of fixed length, a lower flow rate, higher concentration of TX100, and lower concentration of PHE will benefit the longer effective surfactant recovery time. The adsorption data were integrated into bed depth service time models. The height of exchange zone of TX100 should be much shorter than that of PHE, which provides conditions to separate the hydrophobic organic compound from surfactant solutions with AC in a fixed bed. It is likely that the adsorption process is controlled by hydrophobic interaction.

2011 ◽  
Vol 221 ◽  
pp. 635-639
Author(s):  
Jian Ping Zhang ◽  
Xiao Yan Lin ◽  
Xue Gang Luo ◽  
Chi Zhang

A fixed bed column of aminated lignin (AmL) was used for the adsorption of 2,4,6-trinitrotoluene (TNT) from aqueous solution. The effects of AmL, bed height, inlet TNT concentration and feed flow rate on the breakthrough characteristics of the adsorption system were studied. It was found that deeper bed depth, higher initial concentration and lower flow rate were favorable to the adsorption of TNT on the AmL column. The adsorption data fitted well with the Thomas and Yoon–Nelson models. The AmL was shown to be suitable adsorbent for adsorption of TNT using fixed-bed adsorption column.


Author(s):  
Megat Ahmad Kamal Megat Hanafiah ◽  
Shariff Ibrahim ◽  
Nur Izah Fasihah Mohamad Subberi ◽  
Nesamalar Kantasamy ◽  
Is Fatimah

The feasibility of Mengkuang leaves (Pandanus atrocarpus) as a non-conventional low-cost adsorbent for the removal of an anionic dye, Reactive Orange 16 (RO16), was investigated. Among the dyes that have been commonly used in the Batik industry was reactive dye. In this study, Mengkuang leaves were chemically modified with cetyltrimethylammonium bromide (CTAB), a cationic surfactant, to improve their adsorption performance toward anionic dyes. The adsorbent’s morphological characteristics were analyzed using a scanning electron microscope (SEM). The surface of modified Mengkuang leaves seems to be irregular and uneven, with more porous structures than raw Mengkuang leaves. Adsorption of RO16 dye in fixed bed column using modified Mengkuang leaves adsorbent indicated the breakthrough time increased at higher bed height and lower flow rate. The breakthrough times for bed height of 0.5, 2, and 4 cm were at 16, 68, and 165 min, respectively. Meanwhile, breakthrough time for the flow rate of 2,5 and 7 mL.min-1 were at 327, 104, and 43 min, respectively. However, the study utilizing raw Mengkuang leaves showed no significant removal of RO16. Thus, it can be concluded that the cationic surfactant modification of Mengkuang leaves is advantageous for anionic dye removal. This anionic dye removal is significantly influenced by column parameters such as bed height and flow rate as the plotted breakthrough curves obtained from experimental data were similar to the typical breakthrough curve. When applied to the Yoon-Nelson model, the adsorption data provided the best fit with the R2 value above 0.95. The time taken for the breakthrough is very similar to model prediction values. Experiments with real batik dye wastewater showed the immense potential of modified Mengkuang leaves where total removal of real Batik wastewater was instantaneous.


2011 ◽  
Vol 356-360 ◽  
pp. 1139-1144
Author(s):  
Qi Gang Cen ◽  
Meng Xiang Fang ◽  
Jia Ping Xu ◽  
Zhong Yang Luo

In this study, a commercial activated carbon was assessed as adsorbent for post-combustion CO2 capture. The breakthrough adsorption experiments were conducted in a fixed-bed column with simulated flue gas of 12% CO2. The effects of feed flow rate and adsorption pressure on breakthrough time and CO2 adsorption capacity were evaluated. The column efficiency was introduced to estimate the percentage of the utilization of the bed adsorbent capacity. At a higher flow rate, the breakthrough time, breakthrough capacity and column efficiency decreased. Conversely, increasing adsorption pressure was favorable to CO2 adsorption by the increase in breakthrough time, CO2 adsorption capacity and the column efficiency. During the experiments, temperature changes were detected at three positions inside the column to track the movement of breakthrough front.


2020 ◽  
Vol 9 (2) ◽  
pp. 5-13
Author(s):  
Dragana Marković-Nikolić ◽  
Goran Petković ◽  
Nebojša Ristić ◽  
Danijela Bojić ◽  
Miloš Durmišević ◽  
...  

A fixed bed column was applied to remove nitrate ions from an aqueous solution using a cationic modified pumpkin shell as a sorbent. The fixed bed column performances were assessed by varying the influent nitrate concentrations (50 mg dm-3 and 100 mg dm-3) and flow rates (20 cm 3 min-1 and 40 cm 3 min-1) with 13 cm bed height of the sorbent. The obtained results showed that increase of the concentration of the initial nitrate solution affects the increase in the amount of nitrate in the effluent and reduces the breakthrough time. A higher flow rate led to the faster column exhaustion, resulting in the shortened lifespan of the column. In this study, the best nitrate removal was achieved for an initial nitrate solution of 100 mg dm-3 at the flow rate of 20 cm 3 min-1 , when a total nitrate removal of 86% is reached. The relationship between the sorption capacity of this sorbent and the varied parameters was assessed and predicted using two different theoretical breakthrough curve models: the Thomas and Yoon-Nelson models. This study confirmed that the cationic modified pumpkin shell in the fixed bed column has good potential for removing nitrate from aqueous solutions.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
R. Lakshmipathy ◽  
G. L. Balaji ◽  
Iván Leandro Rodríguez Rico

This investigation suggests the implementation of ZSM-5 activated carbon composite as a prolific adsorbent for the continuous elimination of Pb2+ ions from water. Continuous adsorption experiments were performed by varying three parameters such as process flow rate (2-6 mL min-1), bed height (2-6 cm), and initial concentration (250–750 mg L-1). The highest loading capacity of the fixed-bed 213.3 mg L-1 was achieved with optimal values of 2 mL min-1 of flow rate, bed height of 6 cm, and initial concentration of 750 mg L-1, respectively. The breakthrough curves and saturation points were found to appear quickly for increasing flow rates and initial concentration and vice versa for bed depth. The lower flow rates with higher bed depths have exhibited optimal performances of the fixed-bed column. The mechanism of adsorption of Pb2+ ions was found to be ion exchange with Na+ ions from ZMS-5 and pore adsorption onto activated carbon. The breakthrough curves were verified with three well-known mathematical models such as the Adams-Bohart, Thomas, and Yoon-Nelson models. The later models showed the best fit to the column data over the Adams-Bohart model that can be utilized to understand the binding of Pb2+ ions onto the composite. Regeneration of ZSM-5/activated carbon was achieved successfully with 0.1 M HCl within 60 min of contact time. The outcomes conclude that ZSM-5 activated carbon composite is a prolific material for the continuous removal of water loaded with Pb2+ ions.


2014 ◽  
Vol 665 ◽  
pp. 491-494 ◽  
Author(s):  
Jia Jia Wang ◽  
Hui Huang ◽  
Jun Wei Wang ◽  
Shi Ying Tao

Porous starch was prepared by replacing ice crystals in frozen starch gel with ethanol using a solvent exchange method. Porous starch was packed in a laboratory scale fixed-bed column to continuous remove Methylene Blue (MB) from aqueous solution through adsorption. The effects of bed height, feed flow rate and initial MB concentration on the breakthrough time were investigated. The breakthrough time decreased with increase in the flow rate and initial MB concentration, and also varied with the change in bed height. Bed Depth Service Time (BDST) model was used to determine the column kinetic parameters, and showed good agreement with the experimental data.


2016 ◽  
Vol 3 (2) ◽  
pp. 60-71 ◽  
Author(s):  
Chai Ping Ling ◽  
Ivy Ai Wei Tan ◽  
Leonard Lik Pueh Lim

 The spread of heavy metal pollution in the environment can lead to the contamination of crops and water for consumption. An approach to control the spread of groundwater pollution is by using a permeable reactive barrier with granular activated carbon. In this study, the adsorption of Cd(II) ions was conducted in a continuous flow fixed-bed column by using oil palm shell-derived activated carbon. The activated carbon column performance was evaluated by manipulating the activated carbon bed height, cadmium solution flow rate and influent concentration. The increase in bed height increased the amount of adsorbent used, thus increasing the total removal of Cd(II) and prolonged the lifespan of the activated carbon column. However, the increase in flow rate and influent concentration resulted in the shortened lifespan of the column. The column system with a bed height of 5.5 cm, flow rate of 2.0 mL/min and 200 mg/L influent concentration showed the best Cd(II) uptake performance in this study. The column performance were best fitted to the Thomas model and Yoon-Nelson model for the longest bed depth of 5.5 cm, all flow rates studied and highest influent concentration of 200 mg/L, with correlation coefficient greater than 0.95.


2018 ◽  
Vol 8 (11) ◽  
pp. 2221 ◽  
Author(s):  
Olga Długosz ◽  
Marcin Banach

Vermiculite has been used for the removal of Cu 2 + and Ag + from aqueous solutions in a fixed-bed column system. The effects of initial silver and copper ion concentrations, flow rate, and bed height of the adsorbent in a fixed-bed column system were investigated. Statistical analysis confirmed that breakthrough curves depended on all three factors. The highest inlet metal cation concentration (5000 mg/dm3), the lowest bed height (3 cm) and the lowest flow rate (2 and 3 cm3/min for Ag + and Cu 2 + , respectively) were optimal for the adsorption process. The maximum total percentage of metal ions removed was 60.4% and 68.7% for Ag+ and Cu2+, respectively. Adsorption data were fitted with four fixed-bed adsorption models, namely Clark, Bohart–Adams, Yoon–Nelson and Thomas models, to predict breakthrough curves and to determine the characteristic column parameters. The adsorbent was characterized by SEM, FTIR, EDS and BET techniques. The results showed that vermiculite could be applied as a cost-effective sorbent for the removal of Cu 2 + and Ag + from wastewater in a continuous process.


2012 ◽  
Vol 1 (3) ◽  
pp. 81 ◽  
Author(s):  
A Buasri ◽  
B Ksapabutr ◽  
M Panapoy ◽  
N Chaiyut

: The continuous production of ethyl ester was studied by using a steady-state fixed bed reactor (FBR). Transesterification of palm stearin (PS) and waste cooking palm oil (WCPO) with ethanol in the presence of calcium oxide impregnated palm shell activated carbon (CaO/PSAC) solid catalyst was investigated. This work was determined the optimum conditions for the production of ethyl ester from PS and WCPO in order to obtain fatty acid ethyl ester (FAEE) with the highest yield. The effects of reaction variables such as residence time, ethanol/oil molar ratio, reaction temperature, catalyst bed height and reusability of catalyst in a reactor system on the yield of biodiesel were considered. The optimum conditions were the residence time 2-3 h, ethanol/oil molar ratio 16-20, reaction temperature at 800C, and catalyst bed height 300 mm which yielded 89.46% and 83.32% of the PS and WCPO conversion, respectively. CaO/PSAC could be used repeatedly for 4 times without any activation treatment and no obvious activity loss was observed. It has potential for industrial application in the transesterification of triglyceride (TG). The fuel properties of biodiesel were determined. Keywords: biodiesel, calcium oxide, ethyl ester, fixed bed reactor, palm shell activated carbon


Sign in / Sign up

Export Citation Format

Share Document