scholarly journals FORMULATION AND EVALUATION OF DUAL-LAYERED OSMOTIC PUMP CONTROLLED-RELEASE TABLETS OF CEFIXIME

2021 ◽  
Vol 12 (6) ◽  
pp. 7-19
Author(s):  
Rahul Tyagi ◽  
Pankaj Kumar Sharma ◽  
Dilip Kumar Gupta

Background: This study aims to formulate, optimize and evaluate the osmotic tablet of cefixime. It improves the site specification and provides the controlled release of drug once – a – day through this drug delivery system. Cefixime assumes a significant part in dissolvability restricts other than dissolvable sort. It might increase the bioavailability of drugs by the preparation of the osmotic tablet. Method: The forming core tablet does a formulation of Controlled Porosity Osmotic Tablets (CP1 – CP9) using an ingredient like sodium chloride, PVP K30, Microcrystalline cellulose various ratios. The coating of the core tablet is done by Cellulose Acetate, PEG 400, with statistical ratios. Result: On depending upon the various evaluation parameters like hardness, diameter, friability, weight variation, content uniformity, In vitro release, CP9 formulation gave better consequence. The percentage of drug release is >95%. The optimized CP9 batch showed a maximum correlation of 0.992 with a zero-order drug release kinetic model. Conclusion: A controlled release formulation of cefixime based on osmotic technology, were developed. The release from the developed formulation was independent of pH and agitational intensity of the release media; the formulation fitted well into zero-order kinetics, indicating the release to be drug load independent. Drug release was directly proportional to the initial pore level but inversely related to the membrane weight. The release was inversely associated with the release media's osmotic pressure, confirming osmotic pumping as the central mechanism of release.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
V. J. Kapure ◽  
V. V. Pande ◽  
P. K. Deshmukh

In present investigation liquisolid compact technique is investigated as a tool for enhanced dissolution of poorly water-soluble drug Rosuvastatin calcium (RVT). The model drug RVT, a HMG-Co A reductase inhibitor was formulated in form of directly compressed tablets and liquisolid compacts; and studied for in-vitro release characteristics at different dissolution conditions. In this technique, liquid medications of water insoluble drugs in non-volatile liquid vehicles can be converted into acceptably flowing and compressible powders. Formulated systems were assessed for precompression parameters like flow properties of liquisolid system, Fourior transform infra red spectra (FTIR) analysis, X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), and post compression parameters like content uniformity, weight variation, hardness and friability, disintegration test, wetting time, in vitro dissolution studies, effect of dissolution volume on drug release rate, and estimation of fraction of molecularly dispersed drug in liquid medication. As liquisolid compacts demonstrated significantly higher drug release rates, we lead to conclusion that it could be a promising strategy in improving the dissolution of poor water soluble drugs and formulating immediate release solid dosage forms.


Author(s):  
A Rajasekaran ◽  
V Sivakumar ◽  
K Karthika ◽  
J Padma Preetha ◽  
T Abirami

The main aim of this study is to develop ocular drug delivery system for Natamycin; a polyeneantibiotic is highly useful for the treatment of conjunctivitis and keratitis. The ocuserts were preparedusing different polymers such as eudragit L-100, eudragit S-100, eudragit RL-100, hydroxy propylmethyl cellulose phthalate and cellulose acetate phthalate at various proportion and combinationsusing PEG-400 as plasticizer. The prepared ocuserts were evaluated for their physicochemicalparameters like drug content, weight uniformity, folding endurance, thickness, % moistureabsorption and water vapour transmission rate. The in vitro drug release from the formulations wasstudied using commercial semi permeable membrane and the in vitro release kinetic datas weretreated according to the diffusion models proposed by Higuchi and Peppas in order to access themechanism of drug release from the formulations, which were following zero order kinetics. All theformulations showed no change in the physical appearance and the FTIR studies indicated nopossibility of interaction between drug and polymer. The expected zero order release for one day wasobserved in the formulation D1 (3% Eudragit RL100 and 1% Eudragit L100)Keywords: Ocular Insert; Ocular Delivery; NatamycinDOI: 10.3126/kuset.v6i1.3318 Kathmandu University Journal of Science, Engineering and Technology Vol.6(1) 2010, pp108-115


2014 ◽  
Vol 50 (4) ◽  
pp. 799-818 ◽  
Author(s):  
Tariq Ali ◽  
Muhammad Harris Shoaib ◽  
Rabia Ismail Yousuf ◽  
Sabahat Jabeen ◽  
Iyad Naeem Muhammad ◽  
...  

The aim of the present study was to develop tizanidine controlled release matrix. Formulations were designed using central composite method with the help of design expert version 7.0 software. Avicel pH 101 in the range of 14-50% was used as a filler, while HPMC K4M and K100M in the range of 25-55%, Ethylcellulose 10 ST and 10FP in the range of 15 - 45% and Kollidon SR in the range of 25-60% were used as controlled release agents in designing different formulations. Various physical parameters including powder flow for blends and weight variation, thickness, hardness, friability, disintegration time and in-vitro release were tested for tablets. Assay of tablets were also performed as specified in USP 35 NF 32. Physical parameters of both powder blend and compressed tablets such as compressibility index, angle of repose, weight variation, thickness, hardness, friability, disintegration time and assay were evaluated and found to be satisfactory for formulations K4M2, K4M3, K4M9, K100M2, K100M3, K100M9, E10FP2, E10FP9, KSR2, KSR3 & KSR9. In vitro dissolution study was conducted in 900 ml of 0.1N HCl, phosphate buffer pH 4.5 and 6.8 medium using USP Apparatus II. In vitro release profiles indicated that formulations prepared with Ethocel 10 standard were unable to control the release of drug while formulations K4M2, K100M9, E10FP2 & KSR2 having polymer content ranging from 40-55% showed a controlled drug release pattern in the above mentioned medium. Zero-order drug release kinetics was observed for formulations K4M2, K100M9, E10FP2 & KSR2. Similarity test (f2) results for K4M2, E10FP2 & KSR2 were found to be comparable with reference formulation K100M9. Response Surface plots were also prepared for evaluating the effect of independent variable on the responses. Stability study was performed as per ICH guidelines and the calculated shelf life was 24-30 months for formulation K4M2, K100M9 and E10FP2.


Author(s):  
Ankit Acharya ◽  
Mohammed Gulzar Ahmed ◽  
Ravi Chaudhari ◽  
Renukaradhya Chitti

Divalproex sodium is considered as the most important antiepileptic drug and widely used for treatment of epilepsy and bi-polar disorders and prophylaxis of migraine. The present work has been done to formulate bi-layered tablet of Divalproex sodium containing immediate release layer and sustained release layer. The FTIR study revealed that there was no interaction between drug and polymer and combination. Both layers were prepared by wet granulation technique as poor flow property exhibited by pure drug. The immediate release layer was formulated by using superdisintegrants and evaluated for physical parameters, disintegration time and in vitro drug release. The optimized immediate release layer (IF6) with highest in vitro release of 98.11 was selected for bi-layered tablet formulation. HPMC K4M and HPMC K100M polymer were used to retard the drug release from sustained release layer in different proportion and combination and evaluated for physical parameter along with in vitro drug release studies. The optimized sustained release layer (SF8) which extends the Divalproex sodium release more than 18 hrs was selected. Finally, bi-layered tablets were prepared by double compression of selected sustained release layer and immediate release layer of Divalproex sodium. The tablets were evaluated for hardness, thickness, weight variation, friability, drug content uniformity and in vitro drug release. All the physical parameters were in acceptable limit of pharmacopeial specification. The stability studies, shown the bi-layer tablet was stable at 40oC / 75% RH for a period of 3 months.  


Author(s):  
Anusha M ◽  
S T Bhagawati ◽  
K Manjunath

Objective: The aim of the present study was design, develop and to evaluate a model of floating sustained release pellets formulations for Omeprazole by extrusion and spheronization technique. Methods: Omeprazole at different drug to polymer ratios were prepared by extrusion and spheronization technique and the release rate of the drug from the pellets was studied. Further, the in-vitro release studies of pellets were carried out in 0.1N HCL for 12 hours. Prepared pellets were subjected to characterization by different techniques such as loose bulk density, tapped bulk density, compressibility index and angle of repose. To optimize the formulation on the basis of acceptable pellet properties friability, drug content, moisture content, and loss on drying and in-vitro drug release tests were done. In addition, the compatibility studies were performed by using FTIR and DSC. Results: These above studies indicated that the drug release can be modulated by varying the concentration of the polymer. The resulting formulation produced robust pellets with acceptable drug content and low friability. Further, release data was fitted to various mathematical models such as, Higuchi, Korsmeyer-Peppas, First-order, and Zero-order to evaluate the kinetics and mechanism of the drug release. Kinetic modeling of in-vitro dissolution profiles revealed the release mechanism ranges from Quasi-Fickian transport to Anomalous (non-Fickian transport), which was only dependent on the type and amount of polymer used. The drug release of the optimized formulation (F5) follows Zero order kinetics and the mechanism was found to be diffusion controlled. The FTIR and DSC studies reveal that there is no interaction between the drug and the polymer/excipients mixture. Keywords:  Floating, Ethyl cellulose, HPMC, Pellets, Omeprazole.


Author(s):  
Madhusudan Rao Y ◽  
Vinay Kumar K ◽  
Jagan Mohan S ◽  
Kiran Kumar V

This work aims at investigating different types and levels of hydrophilic high molecular weight matrix agents, (including HPMC K15M, Metalose-60 SH, Metalose-65 SH and Metalose-90SH-SR), hydrophobic diluent (Talc) and formulation methods (Non-aqueous granulation and direct filling by simple mere mixture) in an attempt to formulate hard gelatin extended release matrix capsules containing Trihexyphenidyl HCl (Benzhexol). The drug release from all the extended release matrix capsules show polymer as well as talc concentration dependent retardation affect. The Metalose 90SH-SR concentration was optimized to approximately 27% w/w of total capsule net content weight. The hydrophobic diluent’s talc concentration was optimized and the useful concentration was approximately 17.45% w/w of the total net capsule content weight. The lactose concentration was also optimized and the effective concentration was found to be approximately 48.36% w/w. The prepared hard gelatin extended release capsules were evaluated for weight variation, Average net content, locked length, content uniformity, assay (drug content) and in-vitro drug release studies. From the in-vitro release studies of the prepared formulations, one formula was optimized from each method. All the formulations showed linear release profiles and extended the release of trihexyphenidyl HCl (Benzhexol) over 10 –12 h. The release profiles of extended release matrix capsules of trihexyphenidyl HCl (THP HCl) from the selected formulations were close to zero order and follow diffusion dependent release. The prepared extended release matrix capsules of trihexyphenidyl HCl (Benzhexol) produced from the optimized formulations ‘NAG-M90SH-SR-5 and DB M90SH-SR-4’ complied with the USP XXVII specifications. The difference factor (f1) and similarity factor (f2) was calculated for all these formulations and found to the below 15 and above 50. Irrespective of the formulation method type and its procedure, the prepared hydrophilic extended release matrix capsules showed non-Fickian anomalous transport (coupled diffusion in the hydrated matrix and polymer relaxation) as the values of release exponent (n) are in between 0.50 and 0.89. Finally it was clear that it is possible to design a formulation with any of the above two methods giving the desired drug release profile suggesting that nonaqueous granulation, Direct filling were good methods for preparing extended release matrix capsules of trihexyphenidyl HCl (Benzhexol).


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (01) ◽  
pp. 34-40
Author(s):  
V.L Narasaiah ◽  
◽  
Ch. Praneetha ◽  
P Mallika ◽  
K. Pullamma ◽  
...  

The aim of this project was to develop fast dissolving tablets (FDT) of aceclofenac by wet granulation using super disintegrating agents such as cross carmellose sodium (CCS), Crospovidone (CP) and sodium starch glycolate (SSG) were formulated and evaluated. The tablets evaluated for thickness, hardness, friability weight variation, drug content, water absorption ratio, wetting time, disintegration time and in vitro dissolution studies. The in vitro release studies were conducted in pH 7.4 phosphate buffer. Different release models like zero order, first order, Higuchi and Korsmeyer-Peppas were applied to in vitro drug release data in order to evaluate drug release mechanisms and kinetics. The formulation ‘F4’ showed satisfactory physico-chemical properties and drug content uniformity. The formulation ‘F4’ follows first order kinetics and the mechanism of drug release was governed by Higuchi. The ‘n’ value showed between <0.5, it was followed that Fickian transport. The FTIR studies were conducted and it shows that there is no interaction between drug and excipients.


Author(s):  
Deborah Ejiogu Chioma ◽  
Felix Sunday Yusuf

Metoclopramide hydrochloride is a dopamine receptor antagonist, used mostly for stomach and esophageal problems as it is a prokinetic agent. The aim of the present study was to design and evaluate the suppositories of Metoclopramide HCl.  Six different, rectal suppositories were developed by fusion (pour-moulding) method by employing various hydrophilic and hydrophobic polymeric bases like gelatin, PEG-400 and hydrogenated vegetable oil using propylene glycol as plasticizer and beeswax as hardening agent.  Metoclopramide HCl suppositories were evaluated for appearance, weight variation, drug content uniformity, liquefaction time and temperature, micro-melting range, disintegration and in-vitro release study.  The in-vitro release rate data was evaluated statistically and was found that from all the formulations the drug release is by diffusion mechanism. Optimum formulation of batch S1 has shown 83.427% Metoclopramide HCl in a study of 2 hrs. These drug release results are supported by the disintegration time of suppositories. Lesser the disintegration time faster the drug release. All formulations has shown zero, first and Higuchi release kinetics. The result suggests that the Metoclopramide HCl suppositories can be prepared by employing hydrophilic and hydrophobic polymers.


Author(s):  
SANJEEVANI DESAI ◽  
DURGACHARAN BHAGWAT ◽  
SUNITA SHINDE ◽  
JOHN DISOUZA

Objective: The present study was aimed to develop of the Guanfacine Hydrochloride Extended-release tablets for the treatment of Attention Deficit Hyperactivity Disorder (ADHD). The dosage regimen of Guanfacine Hydrochloride is 4 mg at every 6 h. The concentration of Guanfacine in plasma is fluctuating. Hence, to control the plasma fluctuation and to avoid toxicity problem, Guanfacine Hydrochloride was chosen as a drug with an aim to develop an extended release system for 20 to 24 h. Methods: The design of the system was based on the use of pH-dependent polymer (Hydroxypropyl Methyl Cellulose), pH-independent polymer (Eudragit L 100-55), along with microenvironment modifiers such as organic acid (Fumaric acid) were used in the formulation. Drug-excipient compatibility was studied by FTIR. Before compression, the granules were evaluated for precompression parameters such as bulk density, tapped density, an angle of repose, compressibility index and Hausner’s ratio. After compression, evaluation tests of tablets such as general appearance, hardness, thickness, weight variation, friability, content uniformity, in vitro release studies and stability studies were performed. Results: Out of 9 formulations, the drug release was found to be within the innovator formulation F9. The stability study of formulation F9 revealed there was no significant change in physical and chemical properties of drug stored at 40 °C/75 % RH, 30 °C/65 % RH, 25 °C/60 % RH for 2 mo. Conclusion: Optimized formulation batch F9 showed highest F2 value which indicates similarity with innovator product. The study indicates that Guanfacine Hydrochloride Extended-release tablet was successfully developed.


2021 ◽  
Author(s):  
Heba A. Yassin ◽  
Mohamed A. Sharaf ◽  
Hanna A. El-Ghamry ◽  
Abdelaziz E. Abdelaziz

Abstract Dyphylline, xanthine derivatives, is used to manage asthma, cardiac dyspnea, chronic bronchitis, and emphysema. This work aimed to develop controlled release matrix tablets of Dyphylline using different types of polymers, and different preparation techniques such as direct compression, wet granulation, and hot melt methods. The prepared matrix tablets were evaluated by Infrared spectral analysis, differential thermal analysis, evaluation which included hardness, friability, content uniformity, and the in-vitro drug release. Kinetic analysis of the release profiles was investigated using different kinetic orders. All Dyphylline formulae obey Higuchi’s diffusion model. The diffusion is the mechanism of Dyphylline release from its controlled matrix tablets. IR and DSC revealed no incompatibility between Dyphylline and the polymers used in the prepared formulae. The obtained results revealed that the wet granulation technique using water as the granulating liquid is the best method for the formulation of Dyphylline hydrophilic matrix tablets compared with the other techniques. The high content of polymers led to the high value of T1/2, and a decrease in Dyphylline's extent due to the improvement of the retention of drug release. A synergistic effect was obtained using PVP-K-25 in the hydrophilic matrix tablets, which led to the retention of the drug release.


Sign in / Sign up

Export Citation Format

Share Document