scholarly journals Effect of TiO2 Particle Size and Content on the Mechanical Properties of TiO2/Epoxy Composites

2017 ◽  
Vol 21 (1) ◽  
pp. 11-17 ◽  
Author(s):  
Bu-An Kim ◽  
Chang-Kwon Moon
Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 79 ◽  
Author(s):  
Jeesoo Sim ◽  
Youngjeong Kang ◽  
Byung Joo Kim ◽  
Yong Ho Park ◽  
Young Cheol Lee

In this research, a fly ash/epoxy composite was fabricated using fly ash filler classified as industrial waste. The behavior of its mechanical properties was investigated by changing the volume of fly ash to 10, 30 and 50 vol.%. To determine the influence of particle size on the mechanical properties, we used two different sizes of the fly ash, which were separated by sieving to less than 90 μm and 53 μm. To optimize fabrication conditions, the viscosity of the fly ash/epoxy slurry was measured at various temperatures with different fly ash volume fractions. In terms of mechanical properties, tensile strength increased as the amount of fly ash increased, up to a critical point. On the other hand, the compression strength of the composite increased continuously as the amount of fly ash increased. Finally, the fracture surfaces were characterized and correlated with the mechanical properties.


2018 ◽  
Vol 14 (1) ◽  
pp. 29-38
Author(s):  
Jabbar Hussein Mohmmed

Epoxy resin has many chemical features and mechanical properties, but it has a small elongation at break, low impact strength and crack propagation resistance, i.e. it exhibits a brittle behavior. In the current study, the influence of adding kaolin with variable particle size on the mechanical properties (flexural modulus E, toughness Gc, fracture toughness Kc, hardness HB, and Wear rate WR) of epoxy resin was evaluated. Composites of epoxy with varying concentrations (0, 10, 20, 30, 40 weights %) of kaolin were prepared by hand-out method. The composites showed improved (E, Gc, Kc, HB, and WR) properties with the addition of filler. Also, similar results were observed with the decrease in particle size. In addition, in this study, multiple regression models were developed by utilizing (SPSS) package to predict the properties of kaolin reinforced epoxy composites. Good agreement was obtained between the predicted and the experimental results. The accuracy of prediction was (89.71%, 80.58%, 85.82%, 92.27%, and 94.49%) for E, Gc, Kc, HB, and WR, respectively.    


2019 ◽  
Vol 35 (4) ◽  
pp. 485-496
Author(s):  
S. RAJKUMAR ◽  
◽  
R. JOSEPH BENSINGH ◽  
M. ABDUL KADER ◽  
SANJAY K NAYAK ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document