Heat and Mass Transfer Through a Porous Media of MHD Flow of Nanofluids with Thermal Radiation, Viscous Dissipation and Chemical Reaction Effects

2014 ◽  
Vol 4 (6) ◽  
pp. 828-846 ◽  
Author(s):  
Eshetu Haile
2017 ◽  
Vol 9 (4) ◽  
pp. 904-923 ◽  
Author(s):  
Shafqat Hussain

AbstractIn this paper, the problem of magnetohydrodynamics (MHD) boundary layer flow of nanofluid with heat and mass transfer through a porous media in the presence of thermal radiation, viscous dissipation and chemical reaction is studied. Three types of nanofluids, namely Copper (Cu)-water, Alumina (Al2O3)-water and Titanium Oxide (TiO2)-water are considered. The governing set of partial differential equations of the problem is reduced into the coupled nonlinear system of ordinary differential equations (ODEs) by means of similarity transformations. Finite element solution of the resulting system of nonlinear differential equations is obtained using continuous Galerkin-Petrov discretization together with the well-known shooting technique. The obtained results are validated using MATLAB “bvp4c” function and with the existing results in the literature. Numerical results for the dimensionless velocity, temperature and concentration profiles are obtained and the impact of various physical parameters such as the magnetic parameterM, solid volume fraction of nanoparticles 𝜙 and type of nanofluid on the flow is discussed. The results obtained in this study confirm the idea that the finite element method (FEM) is a powerful mathematical technique which can be applied to a large class of linear and nonlinear problems arising in different fields of science and engineering.


2015 ◽  
Vol 127 ◽  
pp. 1315-1322 ◽  
Author(s):  
Manjula Jonnadula ◽  
Padma Polarapu ◽  
Gnaneswara Reddy M ◽  
Venakateswarlu. M

Author(s):  
A. Rashad ◽  
A. Chamkha

Purpose – The purpose of this paper is to study the effects of chemical reaction, thermal radiation and Soret and Dufour effects of heat and mass transfer by natural convection flow about a truncated cone in porous media. Design/methodology/approach – The problem is formulated and solved numerically by an accurate implicit finite-difference method. Findings – It is found that the Soret and Dufour effects as well as the thermal radiation and chemical reaction cause significant effects on the heat and mass transfer charateristics. Originality/value – The problem is relatively original as it considers Soret and Dufour as well as chemical reaction and porous media effects on this type of problem.


2011 ◽  
Vol 7 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Naikotin Kishan ◽  
P. Amrutha

This paper deals with the study of  nonlinear MHD flow, with heat and mass transfer characteristics of an incompressible, viscous, electrically conducting and Boussinesq fluid on a vertical stretching surface with thermal stratification and chemical reaction by taking in to account the viscous dissipation effects. Adopting the similarity transformation, governing nonlinear partial differential equations of the problem are transformed to nonlinear ordinary differential equations. The Quasi-linearization technique is used for the non-linear momentum equation and then the numerical solution of the problem is derived using implicit finite difference technique, for different values of the dimensionless parameters. The numerical values obtained for velocity profiles, temperature profiles and concentration profiles are represent graphically in figures.  The results obtained show that the flow field is influenced appreciably by the presence of viscous dissipation, thermal stratification, chemical reaction and magnetic field.DOI: 10.3329/jname.v7i1.3254 


Author(s):  
Satyabrat Kar ◽  
N. Senapati ◽  
B. K. Swain

An attempt is made to study an unsteady MHD free convective flow with heat and mass transfer past a semi-infinite vertical porous plate immersed in a porous medium. Presence of viscous dissipation and chemical reaction are taken into account. It is assumed that the plate is moved with uniform velocity in the direction of fluid flow. Viscous dissipation term leads nonlinearity in the governing equations. Applying perturbation technique, the solutions for velocity, temperature and concentration are obtained. The effect of various parameters such as Rc, Gr, Gc, Sc etc. on velocity, temperature and concentration are shown through graphs.


Sign in / Sign up

Export Citation Format

Share Document