Effect of Biochar Soil Amendment on Soil Properties and Yield of Sesame Varieties in Lafia, Nigeria

2015 ◽  
Vol 9 (4) ◽  
pp. 1-8 ◽  
Author(s):  
E. Ndor ◽  
O. Jayeoba ◽  
C. Asadu
Author(s):  
Zhikang Wang ◽  
Ziyun Chen ◽  
Xiangxiang Fu

The inoculation of beneficial microorganisms to improve plant growth and soil properties is a promising strategy in the soil amendment. However, the effects of co-inoculation with phosphate-solubilizing bacteria (PSB) and N2-fixing bacteria (NFB) on the soil properties of typical C-deficient soil remain unclear. Based on a controlled experiment and a pot experiment, we examined the effects of PSB (M: Bacillus megaterium and F: Pseudomonas fluorescens), NFB (C: Azotobacter chroococcum and B: Azospirillum brasilence), and combined PSB and NFB treatments on C, N, P availability, and enzyme activities in sterilized soil, as well as the growth of Cyclocarya Paliurus seedlings grow in unsterilized soil. During a 60-day culture, prominent increases in soil inorganic N and available P contents were detected after bacteria additions. Three patterns were observed for different additions according to the dynamic bacterial growth. Synergistic effects between NFB and PSB were obvious, co-inoculations with NFB enhanced the accumulation of available P. However, decreases in soil available P and N were observed on the 60th day, which was induced by the decreases in bacterial quantities under C deficiency. Besides, co-inoculations with PSB and NFB resulted in greater performance in plant growth promotion. Aimed at amending soil with a C supply shortage, combined PSB and NFB treatments are more appropriate for practical fertilization at intervals of 30–45 days. The results demonstrate that co-inoculations could have synergistic interactions during culture and application, which may help with understanding the possible mechanism of soil amendment driven by microorganisms under C deficiency, thereby providing an alternative option for amending such soil.


2020 ◽  
Author(s):  
Ifeyinwa Monica Uzoh ◽  
Chukwuebuka Christopher Okolo ◽  
Akudo Ogechukwu Onunwa ◽  
Olubukola Oluranti Babalola

<p><strong>Abstract</strong></p><p>Cowpea, a food and nutrition security crop is being threatened by decline in soil fertility especially in small holder farmstead. The natural arbuscular mycorrhizal fungi in the soil could improve its ability to acquire and retain nutrients thereby leading to higher yield. This irrigated field research was conducted to determine the effect of biochar rates and cropping systems on selected soil chemical properties, soil microbial biomass carbon (SMBC), nitrogen (SMBN), phosphorus (SMBP), and vesicular-arbuscular mycorrhizal (VAM) spore count and mycorrhizal fungi colonization (AMF) of cowpea. Experimental design was 3 x 3 factorial in randomized complete block design (RCBD). Factor A was three cropping systems; sole cowpea, intercropping and intra-cropping, while factor B was three biochar rates; control (biochar at 0 t ha<sup>-1</sup> (B<sub>0</sub>)), biochar at 2.5 t ha<sup>-1 </sup>(B<sub>1</sub>) and biochar at 5 t ha<sup>-1</sup> (B<sub>2</sub>). These were replicated in three blocks to constitute 27 plots. The entire plot was cleared, ploughed and demarcated into beds with hoes and diggers. Cowpea sole or inter- or intra- cropped with maize were planted in a spacing distance of 25cm by 75cm, with intercropped cowpea being in-between the interrow spacing (75 cm), while the intracropped cowpeas was planted between the intrarow spacing (25 cm). Biochar soil amendment were applied two weeks after planting by making a groove in-between the rows in the soil and covering them with soil. The result showed that biochar soil amendment and interaction of biochar with cropping system significantly (p<0.05) affected SMBN, SMBC, total  VAM spore count and AMF colonization by cowpea, whereas cropping system significantly affected only total VAM spore count and AMF colonization by cowpea. B<sub>2</sub> amended soil had the highest SMBC content (0.028 mg kg<sup>-1</sup>) while the least was from control plot (0.021 mg kg <sup>-1</sup>), SMBN was highest in B<sub>1 </sub>amended soil (0.004 mg kg<sup>-1</sup>), followed by control plot (0.002 mg kg<sup>-1</sup>). Control had higher AMF and total VAM spore count while biochar amended soil had higher soil microbial properties. Considering the cropping systems, inter and intra-cropping had higher microbial biomass and total VAM spore count than sole cowpea whereas sole cowpea had higher AMF infection of cowpea than the intercropped cowpea. Biochar at 5 tha<sup>-1</sup> had the highest available P. Generally, this study showed superiority of the interaction of biochar with cropping systems over sole cropping in the improvement of soil properties in degraded soils of North-West province of South Africa.</p><p>Key words: Cropping systems; Chromic Luvisol; Microbial properties; Soil fertility; Soil amendment</p>


1984 ◽  
Vol 76 (5) ◽  
pp. 719-723 ◽  
Author(s):  
A. L. Stomberg ◽  
D. D. Hemphill ◽  
V. V. Volk ◽  
C. Wickliff

2015 ◽  
Vol 44 (4) ◽  
pp. 1315-1320 ◽  
Author(s):  
Daniel G. Strawn ◽  
April C. Rigby ◽  
Leslie L. Baker ◽  
Mark D. Coleman ◽  
Iris Koch

Chemosphere ◽  
2010 ◽  
Vol 80 (8) ◽  
pp. 935-940 ◽  
Author(s):  
Minori Uchimiya ◽  
Isabel M. Lima ◽  
K. Thomas Klasson ◽  
Lynda H. Wartelle

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1290
Author(s):  
Taia A. Abd El-Mageed ◽  
Eman E. Belal ◽  
Mohamed O. A. Rady ◽  
Shimaa A. Abd El-Mageed ◽  
Elsayed Mansour ◽  
...  

Drought is one of the major threats to global food security. Biochar use in agriculture has received much attention and improving it through chemical modification offers a potential approach for enhancing crop productivity. There is still limited knowledge on how acidified biochar influences soil properties, and consequently its influences on the agricultural productivity of drought stressed plants. The water use efficiency (I-WUE) of drought stressed faba beans was investigated through the effects of acidified biochar (ACBio) (a 3:100 (w:w) combination of citric acid and biochar) on soil properties, growth, productivity, nutrient uptake, water productivity (WP), and irrigation. Two field experiments (2016/2017 and 2017/2018) were conducted in saline soil (ECe, 7.2 dS m−1) on faba been plants grown under three irrigation regimes (i.e., 100, 80, and 60% of crop evapotranspiration (ETc)) combined with three levels of ACBio (0, 5, and 10 t ha−1). Plants exposed to water stress presented a significant decrease in plant height, dry matter, leave area, chlorophyll content (SPAD), the quantum efficiency of photosystem II (Fv/Fm, Fv/F0, and PI), water status (membrane stability index and relative water content), and seed yield. Acidified biochar soil incorporation improved soil properties (chemical and physical), plant growth, physiological responses, WP, I-WUE, and contents of N, P, K, and Ca. Results revealed that the application of ACBio at 10 t ha−1 and 5 t ha−1 significantly increased seed yield by 38.7 and 25.8%, respectively, compared to the control. Therefore, ACBio incorporation may find application in the future as a potential soil amendment for improving growth and productivity of faba bean plants under deficit irrigation.


2021 ◽  
Vol 11 (2) ◽  
pp. 167
Author(s):  
I WAYAN NARKA ◽  
I NYOMAN DIBIA ◽  
I WAYAN DANA ATMAJA

The Effect of the Mount Agung Volcanic Ash and Compost on Soil Properties and Yield of Tunggak Nuts (Vigna unguiculata (L.) Walp). The purpose of this study was to determine the effect of giving volcanic ash and compost as a soil amendment. The design used was a factorial randomized block design. The volcanic ash factor consisted of 3 levels: A0 = no volcanic ash, A1 = 15% volcanic ash and A2 = 30% volcanic ash. The compost factor consisted of 3 levels: K0 = without compost, K1 = 10 tons of compost ha-1, and K2 = 20 tons of compost ha-1. The combination treatments was repeated 3 times so that there were 27 observation units. Several parameters of soil properties and yield of tunggak nuts were studied to determine the effect of volcanic ash and compost as soil amendments. The results showed that the interaction between the treatment of volcanic ash and compost on the soil and plants was not significant, while the single treatment of compost had a significant effect on the growth and yield of tunggak nuts. The treatment of volcanic ash has not shown a significant effect, both on soil and on plant growth and yield.


Author(s):  
Minglong Liu ◽  
Xianlin Ke ◽  
Xiaoyu Liu ◽  
Xiaorong Fan ◽  
Youzun Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document