scholarly journals Scholarly Book Review on Bayesian Statistics for Beginners: A Step-by-Step Approach

Author(s):  
Eahsan Shahriary ◽  
Amir Hajibabaee

This book offers the students and researchers a unique introduction to Bayesian statistics. Authors provide a wonderful journey in the realm of Bayesian Probability and aspire readers to become Bayesian statisticians. The book starts with Introduction to Probability and covers Bayes’ Theorem, Probability Mass Functions, Probability Density Functions, The Beta-Binomial Conjugate, Markov chain Monte Carlo (MCMC), and Metropolis-Hastings Algorithm. The book is very well written, and topics are very to the point with real-world applications but does not provide examples for computing using common open-source software.

Author(s):  
M. D. Edge

This chapter considers the rules of probability. Probabilities are non-negative, they sum to one, and the probability that either of two mutually exclusive events occurs is the sum of the probability of the two events. Two events are said to be independent if the probability that they both occur is the product of the probabilities that each event occurs. Bayes’ theorem is used to update probabilities on the basis of new information, and it is shown that the conditional probabilities P(A|B) and P(B|A) are not the same. Finally, the chapter discusses ways in which distributions of random variables can be described, using probability mass functions for discrete random variables and probability density functions for continuous random variables.


Author(s):  
Thomas P. Trappenberg

The discussion provides a refresher of probability theory, in particular with respect to the formulations that build the theoretical language of modern machine learning. Probability theory is the formalism of random numbers, and this chapter outlines what these are and how they are characterized by probability density or probability mass functions. How such functions have traditionally been characterized is covered, and a review of how to work with such mathematical objects such as transforming density functions and how to measure differences between density function is presented. Definitions and basic operations with multiple random variables, including the Bayes law, are covered. The chapter ends with an outline of some important approximation techniques of so-called Monte Carlo methods.


2016 ◽  
Vol 53 (2) ◽  
pp. 167-242
Author(s):  
Saralees Nadarajah

In Bayesian statistics, one frequently encounters priors and posteriors that are product of two probability density functions. In this paper, we discuss three such priors/posteriors, provide motivation and derive expressions for their moments, median and mode. Forty seven motivating examples are discussed. We expect that this paper could serve as a useful reference for practitioners of Bayesian statistics. It could also encourage further research in this area.


2021 ◽  
Vol 13 (12) ◽  
pp. 2307
Author(s):  
J. Javier Gorgoso-Varela ◽  
Rafael Alonso Ponce ◽  
Francisco Rodríguez-Puerta

The diameter distributions of trees in 50 temporary sample plots (TSPs) established in Pinus halepensis Mill. stands were recovered from LiDAR metrics by using six probability density functions (PDFs): the Weibull (2P and 3P), Johnson’s SB, beta, generalized beta and gamma-2P functions. The parameters were recovered from the first and the second moments of the distributions (mean and variance, respectively) by using parameter recovery models (PRM). Linear models were used to predict both moments from LiDAR data. In recovering the functions, the location parameters of the distributions were predetermined as the minimum diameter inventoried, and scale parameters were established as the maximum diameters predicted from LiDAR metrics. The Kolmogorov–Smirnov (KS) statistic (Dn), number of acceptances by the KS test, the Cramér von Misses (W2) statistic, bias and mean square error (MSE) were used to evaluate the goodness of fits. The fits for the six recovered functions were compared with the fits to all measured data from 58 TSPs (LiDAR metrics could only be extracted from 50 of the plots). In the fitting phase, the location parameters were fixed at a suitable value determined according to the forestry literature (0.75·dmin). The linear models used to recover the two moments of the distributions and the maximum diameters determined from LiDAR data were accurate, with R2 values of 0.750, 0.724 and 0.873 for dg, dmed and dmax. Reasonable results were obtained with all six recovered functions. The goodness-of-fit statistics indicated that the beta function was the most accurate, followed by the generalized beta function. The Weibull-3P function provided the poorest fits and the Weibull-2P and Johnson’s SB also yielded poor fits to the data.


2021 ◽  
Vol 502 (2) ◽  
pp. 1768-1784
Author(s):  
Yue Hu ◽  
A Lazarian

ABSTRACT The velocity gradients technique (VGT) and the probability density functions (PDFs) of mass density are tools to study turbulence, magnetic fields, and self-gravity in molecular clouds. However, self-absorption can significantly make the observed intensity different from the column density structures. In this work, we study the effects of self-absorption on the VGT and the intensity PDFs utilizing three synthetic emission lines of CO isotopologues 12CO (1–0), 13CO (1–0), and C18O (1–0). We confirm that the performance of VGT is insensitive to the radiative transfer effect. We numerically show the possibility of constructing 3D magnetic fields tomography through VGT. We find that the intensity PDFs change their shape from the pure lognormal to a distribution that exhibits a power-law tail depending on the optical depth for supersonic turbulence. We conclude the change of CO isotopologues’ intensity PDFs can be independent of self-gravity, which makes the intensity PDFs less reliable in identifying gravitational collapsing regions. We compute the intensity PDFs for a star-forming region NGC 1333 and find the change of intensity PDFs in observation agrees with our numerical results. The synergy of VGT and the column density PDFs confirms that the self-gravitating gas occupies a large volume in NGC 1333.


2020 ◽  
Vol 8 (1) ◽  
pp. 45-69
Author(s):  
Eckhard Liebscher ◽  
Wolf-Dieter Richter

AbstractWe prove and describe in great detail a general method for constructing a wide range of multivariate probability density functions. We introduce probabilistic models for a large variety of clouds of multivariate data points. In the present paper, the focus is on star-shaped distributions of an arbitrary dimension, where in case of spherical distributions dependence is modeled by a non-Gaussian density generating function.


2021 ◽  
Vol 15 (1) ◽  
pp. 408-433
Author(s):  
Margaux Dugardin ◽  
Werner Schindler ◽  
Sylvain Guilley

Abstract Extra-reductions occurring in Montgomery multiplications disclose side-channel information which can be exploited even in stringent contexts. In this article, we derive stochastic attacks to defeat Rivest-Shamir-Adleman (RSA) with Montgomery ladder regular exponentiation coupled with base blinding. Namely, we leverage on precharacterized multivariate probability mass functions of extra-reductions between pairs of (multiplication, square) in one iteration of the RSA algorithm and that of the next one(s) to build a maximum likelihood distinguisher. The efficiency of our attack (in terms of required traces) is more than double compared to the state-of-the-art. In addition to this result, we also apply our method to the case of regular exponentiation, base blinding, and modulus blinding. Quite surprisingly, modulus blinding does not make our attack impossible, and so even for large sizes of the modulus randomizing element. At the cost of larger sample sizes our attacks tolerate noisy measurements. Fortunately, effective countermeasures exist.


Sign in / Sign up

Export Citation Format

Share Document