scholarly journals On The Transmuted Powered Moment Exponential Distribution

Author(s):  
Zafar Iqbal ◽  
Muhammad Rashad ◽  
Abdur Razaq ◽  
Muhammad Salman ◽  
Afsheen Javed

We introduce a new class of lifetime models called the transmuted powered moment exponential distribution. More specifically, the transmuted powered moment exponential distribution covers several new distributions. Survival analysis including survival function, hazard rate function and other related measures are computed. Analytical expressions for various mathematical properties of TPMED including rth moment, quantile function, inequality measures, and parameters are estimated by using maximum likelihood estimation and order statistics are also derived. A simulation study of the proposed distribution is performed. It is discovered that the Maximum Likelihood Estimators are consistent since the bias and Mean Square Error approach to zero when the sample size increases. The usefulness of the model associated with this distribution is illustrated by two real data sets and the new model provides a better fit than the models provided in literature.

Entropy ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1144
Author(s):  
Zakeia A. Al-Saiary ◽  
Rana A. Bakoban

In this article, a new three parameters lifetime model called the Topp-Leone Generalized Inverted Exponential (TLGIE) Distribution is introduced. Various properties of the model are derived, including moments, quantile function, survival function, hazard rate function, mean deviation and mode. The method of maximum likelihood is used to estimate the unknown parameters. The properties of the maximum likelihood estimators using Fisher information matrix are studied. Three real data sets are applied for illustrative purpose of this study.


Author(s):  
Md. Mahabubur Rahman ◽  
Bander Al-Zahrani ◽  
Muhammad Qaiser Shahbaz

In this paper, we have introduced a new family of general transmuted distributions and have studied the cubic transmuted family of distributions in detail. This new class of distributions oers more distributional exibility when bi-modality appear in the data sets. Some special members of the proposed cubic transmuted family of distributions have been discussed. We have investigated, in detail, the proposed cubic transmuted family of distributions for parent exponential distribution. The statistical properties along with the reliability behavior for the cubic transmuted exponential distribution have been studied. We have obtained the expressions for single and joint order statistics when a sample is available from the cubic transmuted exponential distribution. Maximum likelihood estimation of parameters for cubic transmuted exponential distribution has also been discussed. We have also discussed the simulation and real data applications of the proposed distribution.


Author(s):  
C. Satheesh Kumar ◽  
Subha R. Nair

AbstractIn this paper we consider a generalization of a log-transformed version of the inverse Weibull distribution. Several theoretical properties of the distribution are studied in detail including expressions for its probability density function, reliability function, hazard rate function, quantile function, characteristic function, raw moments, percentile measures, entropy measures, median, mode etc. Certain structural properties of the distribution along with expressions for reliability measures as well as the distribution and moments of order statistics are obtained. Also we discuss the maximum likelihood estimation of the parameters of the proposed distribution and illustrate the usefulness of the model through real life examples. In addition, the asymptotic behaviour of the maximum likelihood estimators are examined with the help of simulated data sets.


2021 ◽  
Vol 20 (2) ◽  
pp. 61-72
Author(s):  
E.W. Okereke ◽  
S.N. Gideon ◽  
J. Ohakwe

A new one-parameter distribution named inverse Akash distribution, for modelling lifetime data, has been  introduced. Important statistical properties of the proposed distribution such as the density function, hazard rate function, survival function, stochastic ordering,  entropy   measure, stress-strength reliability and the maximum  likelihood estimation of the parameter of the distribution have been discussed. Two real data sets were employed in illustrating the usefulness of the new distribution. Comparatively, the inverse Akash distribution provided better fits to the data than each of the inverse exponential distribution and inverse Lindley distribution.


2019 ◽  
Vol 42 (1) ◽  
pp. 1-33 ◽  
Author(s):  
Ronaldo Silva ◽  
Frank Gomes-Silva ◽  
Manoel Ramos ◽  
Gauss Moutinho Cordeiro ◽  
Pedro Marinho ◽  
...  

We propose a new family of distributions called the exponentiated Kumaraswamy-G class with three extra positive parameters, which generalizes the Cordeiro and de Castro's family. Some special distributions in the new class are discussed. We derive some mathematical properties of the proposed class including explicit expressions for the quantile function, ordinary and incomplete moments, generating function, mean deviations, reliability, Rényi entropy and Shannon entropy. The method of maximum likelihood is used to fit the distributions in the proposed class. Simulations are performed in order to assess the asymptotic behavior of the maximum likelihood estimates. We illustrate its potentiality with applications to two real data sets which show that the extended Weibull model in the new class provides a better fit than other generalized Weibull distributions.


2020 ◽  
Vol 9 (2) ◽  
pp. 288-310
Author(s):  
Fazlollah Lak ◽  
Morad Alizadeh ◽  
Hamid Karamikabir

In this article, the Topp-Leone odd log-logistic Gumbel (TLOLL-Gumbel) family of distribution have beenstudied. This family, contains the very flexible skewed density function. We study many aspects of the new model like hazard rate function, asymptotics, useful expansions, moments, generating Function, R´enyi entropy and order statistics. We discuss maximum likelihood estimation of the model parameters. Further, we study flexibility of the proposed family are illustrated of two real data sets.


2018 ◽  
Vol 47 (4) ◽  
pp. 60-80 ◽  
Author(s):  
Morad Alizadeh ◽  
Haitham M. Yousof ◽  
Ahmed Z. Afify ◽  
Gauss M. Cordeiro ◽  
M. Mansoor

We introduce a new class of continuous distributions called the complementary generalized transmuted Poisson-G family, which extends the transmuted class pioneered by Shaw and Buckley (2007). We provide some special models and derive general mathematical properties including quantile function, explicit expressions for the ordinary and incomplete moments, generating function, Rényi and Shannon entropies and order statistics. The estimation of the model parameters is performed by maximum likelihood. The flexibility of the new family is illustrated by means of two applications to real data sets.


2018 ◽  
Vol 47 (2) ◽  
pp. 69-89 ◽  
Author(s):  
Bistoon Hosseini ◽  
Mahmoud Afshari ◽  
Morad Alizadeh

Recently, new continuous distributions have been proposed to apply in statistical analysis. In this paper, the Generalized Odd Gamma-G distribution is introduced. In particular, G has been considered as the Uniform distribution and some statistical properties such as quantile function, asymptotics, moments, entropy and order statistics have been calculated.The fitness capability of this model has been investigated  by fitting this model and others based on real data sets. The  parameters of this model are estimated by the maximum likelihood estimation method with simulated  real data in order to test validity of maximum likelihood estimators .


Author(s):  
Duha Hamed ◽  
Ahmad Alzaghal

AbstractA new generalized class of Lindley distribution is introduced in this paper. This new class is called the T-Lindley{Y} class of distributions, and it is generated by using the quantile functions of uniform, exponential, Weibull, log-logistic, logistic and Cauchy distributions. The statistical properties including the modes, moments and Shannon’s entropy are discussed. Three new generalized Lindley distributions are investigated in more details. For estimating the unknown parameters, the maximum likelihood estimation has been used and a simulation study was carried out. Lastly, the usefulness of this new proposed class in fitting lifetime data is illustrated using four different data sets. In the application section, the strength of members of the T-Lindley{Y} class in modeling both unimodal as well as bimodal data sets is presented. A member of the T-Lindley{Y} class of distributions outperformed other known distributions in modeling unimodal and bimodal lifetime data sets.


2020 ◽  
Vol 9 (1) ◽  
pp. 61-81
Author(s):  
Lazhar BENKHELIFA

A new lifetime model, with four positive parameters, called the Weibull Birnbaum-Saunders distribution is proposed. The proposed model extends the Birnbaum-Saunders distribution and provides great flexibility in modeling data in practice. Some mathematical properties of the new distribution are obtained including expansions for the cumulative and density functions, moments, generating function, mean deviations, order statistics and reliability. Estimation of the model parameters is carried out by the maximum likelihood estimation method. A simulation study is presented to show the performance of the maximum likelihood estimates of the model parameters. The flexibility of the new model is examined by applying it to two real data sets.


Sign in / Sign up

Export Citation Format

Share Document