scholarly journals Proposal of Study on Performance Analysis of OSPFV3 and EIGRP Applications in IPV6

Author(s):  
Richard Essah ◽  
Darpan Anand

The internet protocols are increasingly imposed in recent times, there is a need to propose a study on the performance analysis on OSPFV3 and EIGRP in IPV6 application. IP is currently involved in sensitive areas of internet protocols, remote sensing, telepresence, computer networks and so on. The IP exists in two versions (IPv4 and IPv6), the difference between these two protocols is distinguished in terms of features, operation, and performance. In this study, measuring and evaluation on the performance of the two IPv4 and IPv6 protocols in the networks of communicating companies are proposed for further studies based on the literature gaps identified. The study should be performed by varying the routing protocols RIP, RIPnG, OSPF, OSPFv3, IS-IS and ISIS v6. Further studies should conduct simulation on performance analysis of OSPFV3 and EIGRP in IPV6 applications. The gaps identified after reviewing a number of literature on OSPFV3 and EIGRP with IPV6 network needs to be done since it sought to bridge gaps in literature.

Author(s):  
Md. Anwar Hossain ◽  
Mst. Sharmin Akter

Routing is a design way to pass the data packet. User is assigns the path in a routing configuration. A significant role played by the router for providing the dynamic routing in the network. Structure and Configuration are different for each routing protocols. Next generation internet protocol IPv6 which provides large address space, simple header format. It is mainly effective and efficient routing. It is also ensure good quality of service and also provide security. Routing protocol (OSPFv3) in IPv6 network has been studied and implemented using ‘cisco packet tracer’. ‘Ping’ the ping command is used to check the results. The small virtual network created in Cisco platform .It is also used to test the OSPFv3 protocol in the IPv6 network. This paper also contains step by step configuration and explanation in assigning of IPv6 address in routers and end devices. The receiving and sending the packet of data in a network is the responsibility of the internet protocol layer. It also contains the data analysis of packet forwarding through IPv6 on OSPFv3 in simulation mode of cisco packet virtual environment to make the decision eventually secure and faster protocol in IPv6 environment.


2021 ◽  
Vol 13 (22) ◽  
pp. 4528
Author(s):  
Xin Yang ◽  
Lei Hu ◽  
Yongmei Zhang ◽  
Yunqing Li

Remote sensing image change detection (CD) is an important task in remote sensing image analysis and is essential for an accurate understanding of changes in the Earth’s surface. The technology of deep learning (DL) is becoming increasingly popular in solving CD tasks for remote sensing images. Most existing CD methods based on DL tend to use ordinary convolutional blocks to extract and compare remote sensing image features, which cannot fully extract the rich features of high-resolution (HR) remote sensing images. In addition, most of the existing methods lack robustness to pseudochange information processing. To overcome the above problems, in this article, we propose a new method, namely MRA-SNet, for CD in remote sensing images. Utilizing the UNet network as the basic network, the method uses the Siamese network to extract the features of bitemporal images in the encoder separately and perform the difference connection to better generate difference maps. Meanwhile, we replace the ordinary convolution blocks with Multi-Res blocks to extract spatial and spectral features of different scales in remote sensing images. Residual connections are used to extract additional detailed features. To better highlight the change region features and suppress the irrelevant region features, we introduced the Attention Gates module before the skip connection between the encoder and the decoder. Experimental results on a public dataset of remote sensing image CD show that our proposed method outperforms other state-of-the-art (SOTA) CD methods in terms of evaluation metrics and performance.


2019 ◽  
Vol 214 ◽  
pp. 08026 ◽  
Author(s):  
Raul H. C. Lopes ◽  
Virginia N. L. Franqueira ◽  
Duncan Rand

Two recent and promising additions to the internet protocols are TCP-BBR and QUIC. BBR defines a congestion policy that promises a better control in TCP bottlenecks on long haul transfers and can also be used in the QUIC protocol. TCP-BBR is implemented in the Linux kernels above 4.9. It has been shown, however, to demand careful fine tuning in the interaction, for example, with the Linux Fair Queue. QUIC, on the other hand, replaces HTTP and TLS with a protocol on the top of UDP and thin layer to serve HTTP. It has been reported to account today for 7% of Google’s traffic. It has not been used in server-to-server transfers even if its creators see that as a real possibility. Our work evaluates the applicability and tuning of TCP-BBR and QUIC for data science transfers. We describe the deployment and performance evaluation of TCP-BBR and comparison with CUBIC and H-TCP in transfers through the TEIN link to Singaren (Singapore). Also described is the deployment and initial evaluation of a QUIC server. We argue that QUIC might be a perfect match in security and connectivity to base services that are today performed by the Xroot redirectors.


Sign in / Sign up

Export Citation Format

Share Document