scholarly journals A Sequence of Models of Generalized Second-order Dedekind Theory of Real Numbers with Increasing Powers

Author(s):  
Valeriy K. Zakharov ◽  
Timofey V. Rodionov

The paper is devoted to construction of some closed inductive sequence of models of the generalized second-order Dedekind theory of real numbers with exponentially increasing powers. These models are not isomorphic whereas all models of the standard second-order Dedekind theory are. The main idea in passing to generalized models is to consider instead of superstructures with the single common set-theoretical equality and the single common set-theoretical belonging superstructures with several generalized equalities and several generalized belongings for rst and second orders. The basic tools for the presented construction are the infraproduct of collection of mathematical systems different from the factorized Los ultraproduct and the corresponding generalized infrafiltration theorem. As its auxiliary corollary we obtain the generalized compactness theorem for the generalized second-order language.

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Emin Bešo ◽  
Senada Kalabušić ◽  
Naida Mujić ◽  
Esmir Pilav

AbstractWe consider the second-order rational difference equation $$ {x_{n+1}=\gamma +\delta \frac{x_{n}}{x^{2}_{n-1}}}, $$xn+1=γ+δxnxn−12, where γ, δ are positive real numbers and the initial conditions $x_{-1}$x−1 and $x_{0}$x0 are positive real numbers. Boundedness along with global attractivity and Neimark–Sacker bifurcation results are established. Furthermore, we give an asymptotic approximation of the invariant curve near the equilibrium point.


1980 ◽  
Vol 45 (1) ◽  
pp. 172-176
Author(s):  
W. Richard Stark

Working in ZFC + Martin's Axiom we develop a generalization of the Barwise Compactness Theorem which holds in languages of cardinality less than . Next, using this compactness theorem, an omitting types theorem for fewer than types is proved. Finally, in ZFC, we prove that this compactness result implies Martin's Axiom (the Equivalence Theorem). Our compactness theorem applies to a new class of theories—ccΣ-theories—which generalize the countable Σ-theories of Barwise's theorem. The Omitting Types Theorem and the Equivalence Theorem serve as examples illustrating the use of ccΣ-theories.Assume = (A, ε) or = (A, ε R1,…,Rm) where is admissible. L() is the first-order language with constants for elements of A and relation symbols for relations in . LA is A ⋂ L∞ω where the L of L∞ω is any language in A. A theory T in LA is consistent if there is no derivation in A of a contradiction from T. is LA with new constants ca for each a and A. The basic terms of consist of the constants of and the terms f(ca1,…,cam) built directly from constants using functions f of . The symbol t is used for basic terms. A theory T in LA is Σ if it is defined by a formula of L(). The formula φ⌝ is a logical equivalent of ¬φ defined by: (1) φ⌝ = ¬φ if φ is atomic; (2) (¬φ)⌝ = φ (3) (⋁φ∈Φ φ)⌝ = ⋀φ∈Φ φ⌝; (4) (⋀φ∈Φ φ) ⋁φ∈Φ φ⌝; (5) (∃χφ(x))⌝ ∀χφ⌝(x); ∀χφ(x))⌝ = ∃χφ⌝(x).


1992 ◽  
Vol 35 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Lynn H. Erbe ◽  
Pengxiang Yan

AbstractWe consider the self-adjoint second-order scalar difference equation (1) Δ(rnΔxn) +pnXn+1 = 0 and the matrix system (2) Δ(RnΔXn) + PnXn+1 = 0, where are seQuences of real numbers (d x d Hermitian matrices) with rn > 0(Rn > 0). The oscillation and nonoscillation criteria for solutions of (1) and (2), obtained in [3, 4, 10], are extended to a much wider class of equations by Riccati and averaging techniques.


1966 ◽  
Vol 31 (4) ◽  
pp. 633-640 ◽  
Author(s):  
Mitsuru Yasuhara

The equi-cardinality quantifier1 to be used in this article, written as Qx, is characterised by the following semantical rule: A formula QxA(x) is true in a relational system exactly when the cardinality of the set consisting of these elements which make A(x) true is the same as that of the universe. For instance, QxN(x) is true in 〈Rt, N〉 but false in 〈Rl, N〉 where Rt, Rl, and N are the sets of rational numbers, real numbers, and natural numbers, respectively. We notice that in finite domains the equi-cardinality quantifier is the same as the universal quantifier. For this reason, all relational systems considered in the following are assumed infinite.


1998 ◽  
Vol 4 (4) ◽  
pp. 399-417 ◽  
Author(s):  
Juan Barba

§1. Introduction. The problem raised by the liar paradox has long been an intriguing challenge for all those interested in the concept of truth. Many “solutions” have been proposed to solve or avoid the paradox, either prescribing some linguistical restriction, or giving up the classical true-false bivalence or assuming some kind of contextual dependence of truth, among other possibilities. We shall not discuss these different approaches to the subject in this paper, but we shall concentrate on a kind of formal construction which was originated by Kripke's paper “Outline of a theory of truth” [11] and which, in different forms, reappears in later papers by various authors.The main idea can be presented as follows: assume a first order language ℒ containing, among other unspecified symbols, a predicate symbol T intended to represent the truth predicate for ℒ. Assume, also, a fixed model M = 〈D, I〉 (the base model)where D contains all sentences of ℒ and I interprets all non-logical symbols of ℒ except T in the usual way. In general, D might contain many objects other than sentences of ℒ but as that would raise the problem of the meaning of sentences in which T is applied to one of these objects, we shall assume that this is not the case.


1972 ◽  
Vol 37 (3) ◽  
pp. 562-568
Author(s):  
Andreas Blass

Consider the Löwenheim-Skolem theorem in the form: If a theory in a countable first-order language has a model, then it has a countable model. As is well known, this theorem becomes false if one omits the hypothesis that the language be countable, for one then has the following trivial counterexample.Example 1. Let the language have uncountably many constants, and let the theory say that they are unequal.To motivate some of our future definitions and to introduce some notation, we present another, less trivial, counterexample.Example 2. Let L0 be the language whose n-place predicate (resp. function) symbols are all the n-place predicates (resp. functions) on the set ω of natural numbers. Let be the standard model for L0; we use the usual notation Th() for its complete theory. Add to L0 a new constant e, and add to Th() an axiom schema saying that e is infinite. By the compactness theorem, the resulting theory T has models. However, none of its models are countable. Although this fact is well known, we sketch a proof in order to refer to it later.By [5, p. 81], there is a family {Aα ∣ < α < c} of infinite subsets of ω, the intersection of any two of which is finite.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Irina Astashova ◽  
Josef Diblík ◽  
Evgeniya Korobko

<p style='text-indent:20px;'>The paper studies the asymptotic behaviour of solutions to a second-order non-linear discrete equation of Emden–Fowler type</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \Delta^2 u(k) \pm k^\alpha u^m(k) = 0 $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ u\colon \{k_0, k_0+1, \dots\}\to \mathbb{R} $\end{document}</tex-math></inline-formula> is an unknown solution, <inline-formula><tex-math id="M2">\begin{document}$ \Delta^2 u(k) $\end{document}</tex-math></inline-formula> is its second-order forward difference, <inline-formula><tex-math id="M3">\begin{document}$ k_0 $\end{document}</tex-math></inline-formula> is a fixed integer and <inline-formula><tex-math id="M4">\begin{document}$ \alpha $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ m $\end{document}</tex-math></inline-formula> are real numbers, <inline-formula><tex-math id="M6">\begin{document}$ m\not = 0, 1 $\end{document}</tex-math></inline-formula>.</p>


2021 ◽  
Vol 77 (1) ◽  
Author(s):  
Jaco Gericke

In this article, a supplementary yet original contribution is made to the ongoing attempts at refining ways of comparative-philosophical conceptual clarification of Qohelet’s claim that הבל הכל in 1:2 (and 12:8). Adopting and adapting the latest analytic metaphysical concerns and categories for descriptive purposes only, a distinction is made between הבל as property of הכל and the properties of הבל in relation to הכל. Involving both correlation and contrast, the second-order language framework is hereby extended to a level of advanced nuance and specificity for restating the meaning of the book’s first-order language on its own terms, even if not in them.Contribution: By considering logical, ontological, mereological and typological aspects of property theory in dialogue with appearances of הכל and of הבל in Ecclesiastes 1:2 and 12:8 and in-between, a new way is presented in the quest to explain why things in the world of the text are the way they are, or why they are at all.


Sign in / Sign up

Export Citation Format

Share Document