Anions, Total Petroleum Hydrocarbons and Aromatic Hydrocarbons in Soils of Aba Dumpsites

2016 ◽  
Vol 14 (1) ◽  
pp. 1-8
Author(s):  
E Ogoko ◽  
Kelle Ijeoma
2005 ◽  
Vol 2005 (1) ◽  
pp. 149-160
Author(s):  
M. Srinivasa Reddy ◽  
Shaik Basha ◽  
H. V. Joshi ◽  
G. Ramachandraiah

ABSTRACT The present study assesses the distribution and contamination levels of total petroleum hydrocarbons (TPHCs) in surface seawaters during three successive seasons, (summer, monsoon and winter), and polyeyelie aromatic hydrocarbons (PAHs) in intertidal sediments along the worlds largest Alang-Sosiya ship-scrapping yard. The pollution levels at this coast are evaluated and compared with those at one reference station (Mahuva, 60 km away from this yard towards south) in this region and similar ship scrapping yards in Asia. The concentrations of TPHCs in seawater were high in winter season followed by summer and monsoon which were relatively, much higher, about six times in winter and five times in summer/monsoon as compared to the reference station at Mahuva. The TPHCs concentrations in the coastal waters of Alang-Sosiya region are nearly 10–100 times higher on compared with other regions. The levels of PAHs found in the Alang-Sosiya sediments are between four and nine times higher than these prescribed levels by OSPAR commission. The overall levels of PAHs show the low content in Alang-Sosiya compared to values reported from Chang Jiang in China while the concentrations were nearly three times higher than Aliaga in Turkey. The relationships between the content of PAHs and %TOM (total organic matter) in sediments are discussed.


Author(s):  
Akpan Esther Emmanuel ◽  
Obi Chidi ◽  
Kinigoma Boma

Aims: This study evaluates total petroleum hydrocarbon (TPH) and polycyclic hydrocarbons (PAHs) concentrations in wastewaters from three locations of the oil-producing flow station in Rivers State. Study Design: By experiment and the results obtained by analytical means. Place and Duration of Study: This work was conducted at the Department of Industrial Chemistry/Petrochemical Technology, School of Science and Laboratory Technology, University of Port Harcourt, Choba, Rivers State, Nigeria between February and August, 2021. Methodology: The evaluation was done using gas chromatography-Flame Ionization Detector (GC-FID), and Gas Chromatography-Mass Spectrometer Detector (GC-MSD). Results: Results obtained showed low levels of total petroleum hydrocarbons ranging from 0.051, 0.119, and 0.07 mg/l and 0.01, 0.06, and < 0.01 mg/l for polycyclic aromatic hydrocarbons for the three locations, respectively. The results also revealed that the concentrations of the total petroleum hydrocarbons of the samples from the three locations were highest at carbon atom 17 suggesting a biogenic contribution of organic matter. The chromatographs obtained gave evidence that the nature of the contamination was minimally crude oil, because crude oil normally distributes in broad range, as observed in the locations samples as against the narrower carbon range of C8 to C40 characteristics of refined products. The pristane/phytane ratios, which were 0.925, 0.891 and 0.372 for the three samples, depicted an oxygenated environment. The C17/pristane ratios (39.53, 38.93, and 31.48) for all three locations revealed that the wastewaters were slightly weathered. The low concentrations as well as absence of high molecular weight polycyclic aromatic hydrocarbons and higher concentrations of low molecular weight polycyclic aromatic hydrocarbons support the petrogenity of the wastewaters.  The phenanthrene/anthracene ratios (1.26, 0, and 0) for the three samples confirm the nature of the wastewaters. In addition, the absence of benzo(a)anthracene to chrysene ratio for all three samples point to proper treatment of the wastewaters. Conclusion: From this study, the level of total petroleum hydrocarbons (TPH) and polycyclic hydrocarbons (PAHs) obtained from all the samples were lower than the maximum recommended levels by the Department of Petroleum Resources (DPR). This study recommends constant monitoring in the total petroleum hydrocarbons and polycyclic hydrocarbons concentrations because even at its low concentrations can be injurious to health of the people residing within the facility and beyond.


Sign in / Sign up

Export Citation Format

Share Document