Current Topics in Agricultural Sciences Vol. 4

2021 ◽  
EDIS ◽  
1969 ◽  
Vol 2002 (6) ◽  
Author(s):  
Josephine Turner ◽  
Vervil Mitchell

This document is FCS 7027, one of a series of the Department of Family, Youth and Community Sciences, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Publication date: September 2002. First published: July 1978. Revised: September 2002. https://edis.ifas.ufl.edu/fy446


EDIS ◽  
1969 ◽  
Vol 2002 (8) ◽  
Author(s):  
Elise J. Cassie ◽  
Craig R. Miller ◽  
Joy Cantrell Jordan

Produced by the Department of 4-H and Other Youth Programs, University of Florida Cooperative Extension, Institute of Food and Agricultural Sciences, November, 1992; Reviewed June 2002.


EDIS ◽  
1969 ◽  
Vol 2002 (8) ◽  
Author(s):  
Elmo B. Whitty

This document is SS-AGR-187, one of a series of the Agronomy Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Original publication date November 2002.


EDIS ◽  
1969 ◽  
Vol 2002 (9) ◽  
Author(s):  
Michael T. Olexa ◽  
Laura Minton ◽  
Dulcy Miller ◽  
Sarah Corbett

Este es el documento EDIS FE080, una publicación del Department of Food and Resource Economics, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL. Publicada Noviembre 2002.


Irriga ◽  
2001 ◽  
Vol 6 (3) ◽  
pp. 120-127
Author(s):  
Reginaldo Ferreira Santos ◽  
Antonio Evaldo Klar

DISTRIBUIÇÃO DA EVAPORAÇÃO EM ESTUFA PLÁSTICA NA PRIMAVERA  Reginaldo Ferreira SantosCentro de Ciências Exatas e Tecnológica da UNIOESTE- CP 711CEP 858114-110, Cascavel, PR - Fone: 0XX45 2203155.  E-mail: [email protected] Evaldo KlarDepartamento de Engenharia Rural - Faculdade de Ciências Agronômica- UNESP - CEP 18603-970 - Botucatu, SP. CP: 237.  E-mail:  [email protected]  1  RESUMO O presente trabalho teve como objetivo avaliar a distribuição da evaporação no interior de uma estufa plástica, com uma cultura de pimentão, através da variabilidade espacial e comparar a evaporação dos microevaporímetros com os valores do Tanque classe "A". O experimento foi conduzido no Campus da Universidade Estadual Paulista - FCA/UNESP, no período de primavera, em estufa plástica de polietileno de baixa densidade (PEBD). Na distribuição da evaporação em estufa com orientação norte/sul, verificou-se que as maiores evaporações ocorreram nas extremidades sul e norte tendente ao lado oeste. Já as menores evaporações localizaram-se no centro. No período de primavera, a evaporação média nos microevaporímetros superestimou em 55% a evaporação determinada no Tanque classe "A". UNITERMOS: evaporação, geoestatística, estufa.  SANTOS, R.F, KLAR, A.E.  EVAPORATION DISTRIBUTION INSIDE A PLASTIC TUNNEL IN THE SPRING SEASON  2  ABSTRACT                 The main aim of this study was to verify the evaporation distribution inside a plastic tunnel, with pepper crop, oriented to north/south, through spatial variability and to compare Class A Pan evaporation to punctual evaporations of 40 equidistant microevaporimeters placed from 50cm the soil. The study was carried out at the College of Agricultural Sciences/UNESP, Botucatu – SP in the spring season.  The highest evaporation occurred next to north and to south sides of the tunnel, with tendency to west. Consequently, the lowest evaporations occurred at the center area. The microevaporimeter evaporations were 55% higher than those obtained from Class A Pan. KEYWORDS: evaporation distribution, microevaporimeter.


Author(s):  
O. D. Golyaeva ◽  
O. V. Kurashev ◽  
S. D. Knyazev ◽  
А. Yu. Bakhotskaya

The main goal of the scientific institution was and remains to improve the assortment of fruit and berry crops for the development of domestic horticulture. Black currant breeding at VNIISPK was started by A.F Tamarova and continued by the doctor of agricultural Sciences T.P.Ogoltsova and doctor of agricultural Sciences S.D. Knyazev. A long-term breeding program has been developed. The main goals of the program are to create black currant cultivars with continuous resistance to diseases, first of all powdery mildew, as wells resistance to pests, i.e. bud mite. As a result of the long-term work, over 40 black currant cultivars have been developed, 14 of them are zoned. Red currant breeding was led by the candidate of agricultural Sciences L.V. Bayanova; since 2001 the work has been continued by the candidate of agricultural Sciences O.D. Golyaeva. ‘Heinemanns Rote Spӓtlese’, the descendant of R. multiflorum Kit., was involved in the red currant breeding for the first time in Russia. On its genetic basis, a series of late maturing cultivars with long and dense racemes was created. At the Institute, in total 21cultivars of red currants have been developed, 13 of them are zoned. At present, red currant cultivars make up 25.5% of the zoned assortment in Russia. The first research on gooseberries was stated by V.P. Semakin and A.F Tamarova; since 1992 the systematic gooseberry breeding has been carried out by the candidate of agricultural Sciences O.V. Kurashev. On the basis of Grossularia robusta, we have created gooseberry forms that are resistant to powdery mildew and leaf spots. These forms are highly productive, weakly thorned, having bush habit suitable for mechanized harvest. The result of breeding activities was the transfer of 6 gooseberry cultivars to State agricultural testing: ‘Solnechny Zaychik’, ‘Nekrasovsky’, ‘Yupiter’, ‘Zemlianichny’, ‘Moryachok’ and ‘Discovery’.


2010 ◽  
Vol 138 (3-4) ◽  
pp. 133-138 ◽  
Author(s):  
Thomas Nesme ◽  
Françoise Lescourret ◽  
Stéphane Bellon ◽  
Robert Habib

2018 ◽  
Vol 44 (3) ◽  
pp. 374-382 ◽  
Author(s):  
Tomaž Bartol ◽  
Danica Dolničar ◽  
Bojana Boh Podgornik ◽  
Blaž Rodič ◽  
Tihomir Zoranović

Sign in / Sign up

Export Citation Format

Share Document