Design of Spatio-temporal Data Archival for Big-data Satellite Imagery: Use Cases

Author(s):  
C. Rajabhushanam
2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Hong Ni ◽  
Baorui Liu

This paper from the perspective of multi-dimensional, relational, dynamic this data characteristics and knowledge reconstruction of library spatio-temporal data, Build a cloud service platform for spatio-temporal data of the library?based on the analysis of user demand then discussed its collection, processing, storage and the construction process of user service that provided with the spatio-temporal data. In the era of big data, spatio-temporal data, as a new type of resource, its construction and research enriched and developed traditional data structure relatively.


Algorithms ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 182
Author(s):  
Elias Dritsas ◽  
Andreas Kanavos ◽  
Maria Trigka ◽  
Gerasimos Vonitsanos ◽  
Spyros Sioutas ◽  
...  

Privacy Preserving and Anonymity have gained significant concern from the big data perspective. We have the view that the forthcoming frameworks and theories will establish several solutions for privacy protection. The k-anonymity is considered a key solution that has been widely employed to prevent data re-identifcation and concerns us in the context of this work. Data modeling has also gained significant attention from the big data perspective. It is believed that the advancing distributed environments will provide users with several solutions for efficient spatio-temporal data management. GeoSpark will be utilized in the current work as it is a key solution that has been widely employed for spatial data. Specifically, it works on the top of Apache Spark, the main framework leveraged from the research community and organizations for big data transformation, processing and visualization. To this end, we focused on trajectory data representation so as to be applicable to the GeoSpark environment, and a GeoSpark-based approach is designed for the efficient management of real spatio-temporal data. Th next step is to gain deeper understanding of the data through the application of k nearest neighbor (k-NN) queries either using indexing methods or otherwise. The k-anonymity set computation, which is the main component for privacy preservation evaluation and the main issue of our previous works, is evaluated in the GeoSpark environment. More to the point, the focus here is on the time cost of k-anonymity set computation along with vulnerability measurement. The extracted results are presented into tables and figures for visual inspection.


2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Sávio S. T. De Oliveira ◽  
Vagner J. S. Rodrigues ◽  
Wellington S. Martins

Spatiotemporal data has always been big data. In these days, big data analytics for spatiotemporal data is receiving considerable attention to allow users to analyze huge amounts of data. Traditional big data platforms cannot handle all the challenges of processing spatio-temporal data. Although some big data platforms have been proposed to process a massive volume of spatiotemporal data, neither is considered a clear winner for all possible scenarios. This paper presents the SmarT query engine, a machine learning-based solution that chooses the best big data platform for processing spatiotemporal queries on the fly. In a detailed experimental evaluation, considering the Apache Spark, Elasticsearch, and SciDB big data platforms, the response time decreased up to 22% when using SmarT.


2021 ◽  
Vol 50 (2) ◽  
pp. 18-29
Author(s):  
Christos Doulkeridis ◽  
Akrivi Vlachou ◽  
Nikos Pelekis ◽  
Yannis Theodoridis

In the current era of big spatial data, the vast amount of produced mobility data (by sensors, GPS-equipped devices, surveillance networks, radars, etc.) poses new challenges related to mobility analytics. A cornerstone facilitator for performing mobility analytics at scale is the availability of big data processing frameworks and techniques tailored for spatial and spatio-temporal data. Motivated by this pressing need, in this paper, we provide a survey of big data processing frameworks for mobility analytics. Particular focus is put on the underlying techniques; indexing, partitioning, query processing are essential for enabling efficient and scalable data management. In this way, this report serves as a useful guide of state-of-the-art methods and modern techniques for scalable mobility data management and analytics.


Author(s):  
Peter Baumann

Spatio-temporal data play an important role in science, both as observed natural phenomena like temperature curves or satellite imagery and as artificially generated data such as simulation results or statistical data derived from spatio-temporal phenomena. As a coarse but common classification, spatio-temporal data can be grouped into discretized and conceptually continuous data (Figure 1). The first category allows points, lines, areas, and bodies to have any coordinate value, while the latter category has all data values sitting at the crosspoints of equidistant grids. When dealing with maps, these categories are called vector and raster data, respectively, while in Computational Fluid Dynamics (CFD), for example, the terms general mesh and regular mesh are in use.


Author(s):  
Symphorien Monsia ◽  
Sami Faiz

In recent years, big data has become a major concern for many organizations. An essential component of big data is the spatio-temporal data dimension known as geospatial big data, which designates the application of big data issues to geographic data. One of the major aspects of the (geospatial) big data systems is the data query language (i.e., high-level language) that allows non-technical users to easily interact with these systems. In this chapter, the researchers explore high-level languages focusing in particular on the spatial extensions of Hadoop for geospatial big data queries. Their main objective is to examine three open source and popular implementations of SQL on Hadoop intended for the interrogation of geospatial big data: (1) Pigeon of SpatialHadoop, (2) QLSP of Hadoop-GIS, and (3) ESRI Hive of GIS Tools for Hadoop. Along the same line, the authors present their current research work toward the analysis of geospatial big data.


2020 ◽  
Vol 9 (2) ◽  
pp. 88
Author(s):  
Damião Ribeiro de Almeida ◽  
Cláudio de Souza Baptista ◽  
Fabio Gomes de Andrade ◽  
Amilcar Soares

Trajectory data allow the study of the behavior of moving objects, from humans to animals. Wireless communication, mobile devices, and technologies such as Global Positioning System (GPS) have contributed to the growth of the trajectory research field. With the considerable growth in the volume of trajectory data, storing such data into Spatial Database Management Systems (SDBMS) has become challenging. Hence, Spatial Big Data emerges as a data management technology for indexing, storing, and retrieving large volumes of spatio-temporal data. A Data Warehouse (DW) is one of the premier Big Data analysis and complex query processing infrastructures. Trajectory Data Warehouses (TDW) emerge as a DW dedicated to trajectory data analysis. A list and discussions on problems that use TDW and forward directions for the works in this field are the primary goals of this survey. This article collected state-of-the-art on Big Data trajectory analytics. Understanding how the research in trajectory data are being conducted, what main techniques have been used, and how they can be embedded in an Online Analytical Processing (OLAP) architecture can enhance the efficiency and development of decision-making systems that deal with trajectory data.


2021 ◽  
Vol 256 ◽  
pp. 02040
Author(s):  
Chunlei Zhou ◽  
Xinwei Dong ◽  
Liang Ji ◽  
Bijun Zhang ◽  
Zhongping Xu ◽  
...  

The traditional data mining algorithm focuses too much on a single dimension of data time or space, ignoring the association between time and space, which leads to a large amount of computation and low processing efficiency of the mining algorithm and makes it difficult to guarantee the final data mining effect. In response to the above problems, a hierarchical mining algorithm based on association rules for high-dimensional spatio-temporal big data is proposed. Based on the traditional association rules, after establishing the association rules of spatio-temporal data, the data to be mined are cleaned for redundancy. After selecting the local linear embedding algorithm to reduce the dimensionality of the data, a hierarchical mining strategy is developed to realize high-dimensional spatio-temporal big data mining by searching frequent predicates to form a spatio-temporal transaction database. The simulation experiment results verify that the algorithm has high complexity and can effectively reduce the processing volume, which can improve the processing efficiency by at least 56.26% compared with other algorithms.


Sign in / Sign up

Export Citation Format

Share Document