Rule Learner and Multithreading Technique with Genetic Algorithm for Inline Intrusion Detection System for High Speed Network

Author(s):  
D. P. Gaikwad
2013 ◽  
Vol 760-762 ◽  
pp. 2010-2013
Author(s):  
Hui Qing Qiu ◽  
Cong Wang ◽  
Jie Lu

A technique of high-speed network intrusion detection system based on packet sampling theory is proposed. Starting with basic principles of packet sampling, this paper first analyses the significant mathematical conclusion of sampling strategies, then after discussing current strategies, mechanism and performance of different packet sampling methods, we specify an efficient strategy of packet sampling. Results show that this method can attain above 55% accurate rate with below 1% false rate in 94 specified attacking cases from DARPA 2000 IDS evaluation dataset.


2004 ◽  
Vol 27 (13) ◽  
pp. 1288-1294 ◽  
Author(s):  
Wu Yang ◽  
Bin-Xing Fang ◽  
Bo Liu ◽  
Hong-Li Zhang

2012 ◽  
Vol 263-266 ◽  
pp. 2915-2919
Author(s):  
Gao Long Ma ◽  
Wen Tang

With the great increasing of high-speed networks,the traditional network intrusion detection system(NIDS) has a serious problem with handling heavy traffic loads in real-time ,which may result in packets loss and error detection . In this paper we will introduce the efficient load balancing scheme into NIDS and improve rule sets of the detection engine so as to make NIDS more suitable to high-speed networks environment.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1046 ◽  
Author(s):  
Omar Almomani

The network intrusion detection system (NIDS) aims to identify virulent action in a network. It aims to do that through investigating the traffic network behavior. The approaches of data mining and machine learning (ML) are extensively used in the NIDS to discover anomalies. Regarding feature selection, it plays a significant role in improving the performance of NIDSs. That is because anomaly detection employs a great number of features that require much time. Therefore, the feature selection approach affects the time needed to investigate the traffic behavior and improve the accuracy level. The researcher of the present study aimed to propose a feature selection model for NIDSs. This model is based on the particle swarm optimization (PSO), grey wolf optimizer (GWO), firefly optimization (FFA) and genetic algorithm (GA). The proposed model aims at improving the performance of NIDSs. The proposed model deploys wrapper-based methods with the GA, PSO, GWO and FFA algorithms for selecting features using Anaconda Python Open Source, and deploys filtering-based methods for the mutual information (MI) of the GA, PSO, GWO and FFA algorithms that produced 13 sets of rules. The features derived from the proposed model are evaluated based on the support vector machine (SVM) and J48 ML classifiers and the UNSW-NB15 dataset. Based on the experiment, Rule 13 (R13) reduces the features into 30 features. Rule 12 (R12) reduces the features into 13 features. Rule 13 and Rule 12 offer the best results in terms of F-measure, accuracy and sensitivity. The genetic algorithm (GA) shows good results in terms of True Positive Rate (TPR) and False Negative Rate (FNR). As for Rules 11, 9 and 8, they show good results in terms of False Positive Rate (FPR), while PSO shows good results in terms of precision and True Negative Rate (TNR). It was found that the intrusion detection system with fewer features will increase accuracy. The proposed feature selection model for NIDS is rule-based pattern recognition to discover computer network attack which is in the scope of Symmetry journal.


Sign in / Sign up

Export Citation Format

Share Document