scholarly journals Formulation, Development and Characterization of Floating Microspheres of Selected Calcium Channel Blocker

Author(s):  
Rajeev Kumar ◽  
Sushant Kumar Shrivastava

The main aim of the present investigation is to study of formulation, development and characterization of floating mcrospheres of verapamil hydrochloride. Floating microspheres with a central hollow cavity were prepared by using a modified Quasi-emulsion diffusion technique. Weighed quantities of verapamil hydrochloride, ethyl cellulose, polyethylene oxide and hydroxy propylmethyl cellulose (HPMC K15M) were dissolved in a mixture of ethanol and dichloromethane (1:1 solvent ratio) at room temperature in a magnetic stirrer at 50 rpm for 50 min. The samples were assayed for drug content using UV spectrophotometer at 228 nm after suitable dilution. No interference was found due to the other components of floating microspheres at 228 nm. The yield was determined by weighing the microspheres and then the percentage yield was calculated with respect to the weight of the input materials, i.e., weight of verapamil and polymers used. The polymers like ethyl cellulose, eudragit L 100, polyethylene oxide and HPMC were selected for hollow microspheres preparation. These formulations contained ethyl cellulose (2%) and Polyethylene oxide (1%), HPMC K15M (1%) & eudragit L100 (1%) respectively. The encapsulation efficiency ranged between 53 ± 2.2 to 89 ± 1.9%, and was observed that the encapsulation efficiency increased with increasing amount of polymers in the hollow microspheres. The sphericity factors for all formulations were in the range of 1.01 ± 0.2 to 1.29  ±  0.6  and  the  sphericity  values  of  best  formulations  F3,  F7  and  F9  were 1.05±0.2, 1.07 ± 0.1 and 1.16 ± 0.1 respectively. Quassi emulsion method used for preparation of hollow microspheres was suitable for poor water soluble drugs, because the drug was soluble in the internal organic phase.

Author(s):  
A. N. Patil ◽  
D. M. Shinkar ◽  
R. B. Saudagar

Enhancement of solubility, dissolution rate and bioavailability of the drug is a very challenging task in drug development, nearly 40% of the new chemical entities currently being discovered are poorly water soluble drugs. The solubility behaviour of the drugs remains one of the most challenging aspects in formulation development. This results in important products not reaching the market or not achieving their full potential. Solid dispersion is one of the techniques adopted for the formulation of such drugs and various methods are used for the preparation of solid dispersion. Solid dispersion is generally prepared with a drug which is having poor aqueous solubility and hydrophilic carrier. This article review various methods and concept of solid dispersion, criteria for drug selection, advantage and disadvantage, characterization, and application.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1679
Author(s):  
Thao T.D. Tran ◽  
Phuong H.L. Tran

In recent decades, solid dispersions have been demonstrated as an effective approach for improving the bioavailability of poorly water-soluble drugs, as have solid dispersion techniques that include the application of nanotechnology. Many studies have reported on the ability to change drug crystallinity and molecular interactions to enhance the dissolution rate of solid dispersions using hydrophilic carriers. However, numerous studies have indicated that insoluble carriers are also promising excipients in solid dispersions. In this report, an overview of solid dispersion strategies involving insoluble carriers has been provided. In addition to the role of solubility and dissolution enhancement, the perspectives of the use of these polymers in controlled release solid dispersions have been classified and discussed. Moreover, the compatibility between methods and carriers and between drug and carrier is mentioned. In general, this report on solid dispersions using insoluble carriers could provide a specific approach and/or a selection of these polymers for further formulation development and clinical applications.


2019 ◽  
Vol 16 (5) ◽  
pp. 1351-1365
Author(s):  
Muhammad Iqbal Nasiri ◽  
Rabia Ismail Yousuf ◽  
Muhammad Harris Shoaib ◽  
Kamran Zaheer ◽  
Tariq Ali ◽  
...  

2017 ◽  
Vol 4 (1) ◽  
pp. 94-99
Author(s):  
Syamsul Falah ◽  
Sulistiyani Sulistiyani ◽  
Dimas Andrianto

Nanoparticles-based drug delivery has been recognized to improve the solubility of poorly water-soluble drugs, prolong the half-life of drug systematic circulation by reducing immunogenicity, and releases drugs at a sustain rate. The present study reports on the characterization of mahogany bark extract-loaded chitosan nanoparticles and their antioxidant activity.  Mahogany bark meal was extracted in boiled water for four hours.  Chitosan-sodium tripolyphosphate (STPP) nanospheres were sonicated with ultrasonicator to obtain chitosan-STTP nanocapsules for 30 and 60 min and then were dried with spray dryer. The chitosan-STPP nanocapsules loaded by mahogany extract were then analysed for surface morphology and physical state by scanning electron microscope (SEM) and X ray diffraction (XRD), respectively. Antioxidant activity of the nanoparticles was evaluated by scavenging the 1,1-diphenyl-2-picrylhydrazyl (DPPH) using free radical method. Based on SEM data, the nanoparticle shapes were viewed to adhere to spherical shape. Spherical chitosan-STTP nanoparticles loaded with mahogany bark extract were obtained in the size range of 480 ~ 2000 nm and 240 ~ 1000 nm for 30 and 60 min of ultrasonication time, respectively. The antioxidant activity of the nanoparticles was lower than that of the native mahogany bark extract. 


2020 ◽  
Vol 14 (1) ◽  
pp. 63-74 ◽  
Author(s):  
Ritu Kaushik ◽  
Vikas Budhwar ◽  
Deepak Kaushik

The oral bioavailability enhancement of poorly water-soluble medicaments is still one of the most complicated aspects of the formulation development. Various approaches are currently available for solubility and rate of dissolution enhancement such as salt formation, solubilization and reduction of particle size, each with its own limitations and advantages. Solid dispersion is one of the most suitable approaches for the formulation development of poorly water-soluble drugs. The popularity of solid dispersion is evident from the increasing number of patent applications and patents granted in this field during recent years. This article reviews the various approaches for the preparation of solid dispersion such as a solvent melting, hot-melt extrusion method, solvent evaporation method, cryogenic processing approaches etc. from the perspective of patents filed or granted for these techniques. Some of the aspects taken into account before the preparation of solid dispersions are carrier selection and physicchemical testing along with an insight into the molecular arrangement of medicaments in solid dispersion. The manuscript further highlights various commercial patented technology platforms such as Solumertm, Hovione and Kinetisol which are based on the concept of solid dispersions.


2013 ◽  
Vol 3 (1) ◽  
pp. 2
Author(s):  
Rakesh P. Patel ◽  
Kaushal P. Patel ◽  
Kushal A. Modi ◽  
Chirayu J. Pathak

The objective of this study was to develop and manufacture a stable parenteral formulation for Aspirin, a non steroidal anti-inflammatory agent. The solubility and stability of the drug was determined. Solubility studies suggested that Aspirin exhibited poor aqueous solubility but showed appreciable solubility in non-aqueous solvents. Based on the preformulation studies, a lyophilized parenteral formulation containing 25 mg/mL of Aspirin was prepared in a solvent system containing of 80% v/v water and 20% v/v polyethylene glycol-400 (PEG-400). Rubber closures, filter membranes, and liquid transfer tubing were selected on the basis of compatibility studies. The formulation was subjected to accelerated stability studies. After reconstitution with sterile water for injection, Aspirin injection was stable for a period of 8 hr at 2°C to 8°C. Accelerated stability studies suggested that the lyophilized product should be kept at controlled room temperature for longterm storage. The proposed non-aqueous solvent concentration used, are known to safe hence, toxicities/safety related issues may not raise. The proposed techniques would be economical, convenient and safe. Thus, the study opens the chances of preparing lyophilized formulation of poorly-water soluble drugs.


Sign in / Sign up

Export Citation Format

Share Document