scholarly journals Solving Generalized Nonlinear Schrödinger Equation by Adomian Decomposition Technique

Author(s):  
Gaston Edah ◽  
Villévo Adanhoumè ◽  
Marc Amour Ayela

In this paper, using a suitable change of variable and applying the Adomian decomposition method to the generalized nonlinear Schr¨odinger equation, we obtain the analytical solution, taking into account the parameters such as the self-steepening factor, the second-order dispersive parameter, the third-order dispersive parameter and the nonlinear Kerr effect coefficient, for pulses that contain just a few optical cycle. The analytical solutions are plotted. Under influence of these effects, pulse did not maintain its initial shape.  

Open Physics ◽  
2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Gaston Edah ◽  
Villévo Adanhounmè ◽  
Antonin Kanfon ◽  
François Guédjé ◽  
Mahouton Norbert Hounkonnou

AbstractThis paper considers a novel approach to solving the general propagation equation of optical pulses in an arbitrary non-linear medium. Using a suitable change of variable and applying the Adomian decomposition method to the non-linear Schrödinger equation, an analytical solution can be obtained which takes into accountparameters such as attenuation factor, the second order dispersive parameter, the third order dispersive parameter and the non-linear Kerr effect coefficient. By analysing the solution, this paper establishes that this method is suitable for the study of light pulse propagation in a non-linear optical medium.


1999 ◽  
Vol 301 (3-4) ◽  
pp. 343-346 ◽  
Author(s):  
Tieqiao Zhang ◽  
Feng Wang ◽  
Hong Yang ◽  
Qihuang Gong ◽  
Xin An ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-13
Author(s):  
T. Gul ◽  
S. Islam ◽  
R. A. Shah ◽  
I. Khan ◽  
L. C. C. Dennis

This paper aims to study the influence of heat transfer on thin film flow of a reactive third order fluid with variable viscosity and slip boundary condition. The problem is formulated in the form of coupled nonlinear equations governing the flow together with appropriate boundary conditions. Approximate analytical solutions for velocity and temperature are obtained using Adomian Decomposition Method (ADM). Such solutions are also obtained by using Optimal Homotopy Asymptotic Method (OHAM) and are compared with ADM solutions. Both of these solutions are found identical as shown in graphs and tables. The graphical results for embedded flow parameters are also shown.


Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 335 ◽  
Author(s):  
Rasool Shah ◽  
Hassan Khan ◽  
Muhammad Arif ◽  
Poom Kumam

In the present article, we related the analytical solution of the fractional-order dispersive partial differential equations, using the Laplace–Adomian decomposition method. The Caputo operator is used to define the derivative of fractional-order. Laplace–Adomian decomposition method solutions for both fractional and integer orders are obtained in series form, showing higher convergence of the proposed method. Illustrative examples are considered to confirm the validity of the present method. The fractional order solutions that are convergent to integer order solutions are also investigated.


2015 ◽  
Vol 7 (5) ◽  
pp. 675-686 ◽  
Author(s):  
Lei Lu ◽  
Junsheng Duan ◽  
Longzhen Fan

AbstractIn this paper, the nonlinear boundary value problem (BVP) for the Jeffery-Hamel flow equations taking into consideration the magnetohydrodynamics (MHD) effects is solved by using the modified Adomian decomposition method. We first transform the original two-dimensional MHD Jeffery-Hamel problem into an equivalent third-order BVP, then solve by the modified Adomian decomposition method for analytical approximations. Ultimately, the effects of Reynolds number and Hartmann number are discussed.


2017 ◽  
Vol 20 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Xueqin Lv ◽  
Jianfang Gao

The Adomian decomposition method (ADM) is an efficient method for solving linear and nonlinear ordinary differential equations, differential algebraic equations, partial differential equations, stochastic differential equations, and integral equations. Based on the ADM, a new analytical and numerical treatment is introduced in this research for third-order boundary-value problems. The effectiveness of the proposed approach is verified by numerical examples.


Sign in / Sign up

Export Citation Format

Share Document