scholarly journals MECHANISM OF BEACH PROFILE DEFORMATION DUE TO ON-OFFSHORE SAND DRIFT

1984 ◽  
Vol 1 (19) ◽  
pp. 142
Author(s):  
Wi-Gwang Pae ◽  
Yuichi Iwagaki

In the present study, two-dimensional laboratory experiments were performed to investigate the sediment transport due to waves on a fixed sloping beach. Polystyrene particles and glass balls were used as tracers to determine the mass transport velocity near the bottom and the net transport velocity of sediment moving on an impermeable slope. Relationships between the mass transport velocity of water and the net sediment transport velocity are investigated experimentally. The mechanism of two-dimensional beach deformation from an initial uniform slope toward an equilibrium profile due to bed-load movement is discussed on the basis of spatial distributions of the net sediment transport velocity. In addition, some results of experiments using a movable bed are presented to confirm the validity of a beach deformation model derived from the discussion of the tracer experiments.

1983 ◽  
Vol 10 (1) ◽  
pp. 142-149 ◽  
Author(s):  
Michael C. Quick

Sediment transport is measured under the combined action of waves and currents. Measurements are made with currents in the direction of wave advance and with currents opposing the wave motion. Theoretical relationships are considered that predict the wave velocity field and the mass transport velocity for zero current and for steady currents.Following Bagnold's approach, a transport power relationship is developed to predict the sediment transport rate. Making assumptions for the mass transport velocity, the transport power is shown to agree with the measured sediment transport rates. It is particularly noted that the sediment transport direction is mainly determined by the direction of wave movement, even for adverse currents, until the waves start to break. Keywords: sediment transport, waves and currents, coastal engineering.


1976 ◽  
Vol 76 (4) ◽  
pp. 819-828 ◽  
Author(s):  
B. D. Dore

The double-boundary-layer theory of Stuart (1963, 1966) and Riley (1965, 1967) is employed to investigate the mass transport velocity due to two-dimensional standing waves in a system comprising two homogeneous fluids of different densities and viscosities. The most important double-boundary-layer structure occurs in the neighbourhood of the oscillating interface, and the possible existence of jet-like motions is envisaged at nodal positions, owing to the nature of the mean flows in the layers. In practice, the magnitude of the mass transport velocity can be a significant fraction of that of the primary, oscillatory velocity.


1994 ◽  
Vol 266 ◽  
pp. 121-145 ◽  
Author(s):  
Jiangang Wen ◽  
Philip L.-F. Liu

Mass transport under partially reflected waves in a rectangular channel is studied. The effects of sidewalls on the mass transport velocity pattern are the focus of this paper. The mass transport velocity is governed by a nonlinear transport equation for the second-order mean vorticity and the continuity equation of the Eulerian mean velocity. The wave slope, ka, and the Stokes boundary-layer thickness, k (ν/σ)½, are assumed to be of the same order of magnitude. Therefore convection and diffusion are equally important. For the three-dimensional problem, the generation of second-order vorticity due to stretching and rotation of a vorticity line is also included. With appropriate boundary conditions derived from the Stokes boundary layers adjacent to the free surface, the sidewalls and the bottom, the boundary value problem is solved by a vorticity-vector potential formulation; the mass transport is, in gneral, represented by the sum of the gradient of a scalar potential and the curl of a vector potential. In the present case, however, the scalar potential is trivial and is set equal to zero. Because the physical problem is periodic in the streamwise direction (the direction of wave propagation), a Fourier spectral method is used to solve for the vorticity, the scalar potential and the vector potential. Numerical solutions are obtained for different reflection coefficients, wave slopes, and channel cross-sectional geometry.


The mass transport velocity in water waves propagating over an elastic bed is investigated. Water is assumed to be incompressible and slightly viscous. The elastic bed is also incompressible and satisfies the Hooke’s law. For a small amplitude progressive wave perturbation solutions via a boundary-layer approach are obtained. Because the wave amplitude is usually larger than the viscous boundary layer thickness and because the free surface and the interface between water and the elastic bed are moving, an orthogonal curvilinear coordinate system (Longuet-Higgins 1953) is used in the analysis of free surface and interfacial boundary layers so that boundary conditions can be applied on the actual moving surfaces. Analytical solutions for the mass transport velocity inside the boundary layer adjacent to the elastic seabed and in the core region of the water column are obtained. The mass transport velocity above a soft elastic bed could be twice of that over a rigid bed in the shallow water.


1966 ◽  
Vol 1 (10) ◽  
pp. 11 ◽  
Author(s):  
Arthur Brebner ◽  
J.A. Askew ◽  
S.W. Law

On the basis of non-viscous small amplitude firstorder theory the maximum value of the horizontal orbital motion at the bed in water of constant depth his given by /U/n yy* »* " r •»** */i where k = /L, H is the wave height crest to trough, T is the period, and L the wave length (L = Sry2jr Arf 2*%/L ). On the basis of finite amplitude wave theory where the particle orbits are not closed ana by the insertion of the viscous laminar boundary layer (the conducti6n solution) the mean drift velocity or mass transport velocity on a perfectly smooth bed is given by Longuet- Higgins (1952) as 7, K H* kcr where


1970 ◽  
Vol 43 (1) ◽  
pp. 177-185 ◽  
Author(s):  
B. Johns

Oscillatory flow in a turbulent boundary layer is modelled by using a coefficient of eddy viscosity whose value depends upon distance from a fixed boundary. A general oscillatory flow is prescribed beyond the layer, and the model is used to calculate the mass transport velocity induced by this within the layer. The result is investigated numerically for a representative distribution of eddy viscosity and the conclusions interpreted in terms of the mass transport induced by progressive and standing waves. For progressive waves, the limiting value of the mass transport velocity at the outer edge of the layer is the same as for laminar flow. For standing waves, the limiting value is reduced relative to its laminar value but, within the lowermost 25% of the layer, there is a drift which is reversed relative to the limiting value. This is considerably stronger than its counterpart in the laminar case and, in view of the greater thickness of the turbulent layer, it may make a dominant contribution to the net movement of loose bed material by a standing wave system.


Sign in / Sign up

Export Citation Format

Share Document