scholarly journals RIGID BODY MOTION OF A FLOATING BREAKWATER

1984 ◽  
Vol 1 (19) ◽  
pp. 179
Author(s):  
Robert W. Miller ◽  
Derald R. Christensen

Predictions of the dynamic response of a floating breakwater obtained from a frequency domain analysis are compared with full-scale field measurements. Those parameters prominently affecting accurate response predictions are identified and discussed.

Author(s):  
Arcandra Tahar ◽  
John Halkyard ◽  
Mehernosh Irani

The Horn Mountain Spar is located in 1,654 m of water about 135 km from Venice, Louisiana in the Gulf of Mexico. The facility was instrumented extensively to measure key spar and riser response parameters (Edwards et. al. 2003). Halkyard et. al. (2004) and Tahar et. al. (2005) have compared measured spar responses such as motion and mooring line tensions with numerical predictions. This paper extends the work done on comparison of the full scale data during hurricane Isidore. All previous numerical simulations were based on a time domain analysis procedure. One concern related to this method is that it is computationally intensive and time consuming. In the initial stages of a project, a frequency domain solution may be an effective tool compared with a fully coupled time domain analysis. The present paper compares results of time domain and frequency domain simulations with field measurements. Particular attention has been placed on the importance of the phase relationship between motion and excitation force. In the time domain analysis, nonlinear drag forces are applied at the instantaneous position. Whereas in the frequency domain analysis, nonlinear drag forces are stochastically linearized and solutions are obtained by an iterative procedure. The time domain analysis has better agreement with the field data compared to the frequency domain. Overall, however, the frequency domain method is still promising for a quick and approximate estimation of relevant statistics. With advantages in terms of CPU time, the frequency domain method can be recommended as a tool in pre-front end engineering design or in a phase where an iterative nature of design of an offshore structure takes place.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3606
Author(s):  
Jing-Yuan Lin ◽  
Chuan-Ting Chen ◽  
Kuan-Hung Chen ◽  
Yi-Feng Lin

Three-phase wye–delta LLC topology is suitable for voltage step down and high output current, and has been used in the industry for some time, e.g., for server power and EV charger. However, no comprehensive circuit analysis has been performed for three-phase wye–delta LLC. This paper provides complete analysis methods for three-phase wye–delta LLC. The analysis methods include circuit operation, time domain analysis, frequency domain analysis, and state–plane analysis. Circuit operation helps determine the circuit composition and operation sequence. Time domain analysis helps understand the detail operation, equivalent circuit model, and circuit equation. Frequency domain analysis helps obtain the curve of the transfer function and assists in circuit design. State–plane analysis is used for optimal trajectory control (OTC). These analyses not only can calculate the voltage/current stress, but can also help design three-phase wye-delta connected LLC and provide the OTC control reference. In addition, this paper uses PSIM simulation to verify the correctness of analysis. At the end, a 5-kW three-phase wye–delta LLC prototype is realized. The specification of the prototype is a DC input voltage of 380 V and output voltage/current of 48 V/105 A. The peak efficiency is 96.57%.


2020 ◽  
Vol 53 (2) ◽  
pp. 13161-13166
Author(s):  
Henrik Alenius ◽  
Roni Luhtala ◽  
Tomi Roinila

Sign in / Sign up

Export Citation Format

Share Document