scholarly journals BARRIER ISLAND RESTORATION FOR STORM DAMAGE REDUCTION: WILLAPA BAY, WASHINGTON, USA

2011 ◽  
Vol 1 (32) ◽  
pp. 32
Author(s):  
David R Michalsen ◽  
Steven D Babcock ◽  
Lihwa Lin

The U.S. Army Corps of Engineers, Seattle District has completed a feasibility study and determined barrier island restoration to be the most appropriate long-term coastal flood and storm damage reduction measure for the Shoalwater Indian Reservation. Over the last century, Cape Shoalwater has receded more than 2.8 miles. By 1990, the Shoalwater Reservation’s only remaining protection from storm wave attack was a series of barrier islands fronting Tokeland Peninsula. Extreme water levels coincident with strong winter storms have historically inundated this low lying topography and are responsible for the erosion and overwash of the protective barrier island known as Graveyard Spit. Here a simple risk assessment tool is presented for identifying flood risk to the Shoalwater Reservation infrastructure. Statistical analysis of extreme water levels and numerical modeling is utilized to determine the extent of inundation. From the analysis it was determined 54% of the inventoried infrastructure is at risk during a storm event equivalent to the observed event on March 3, 1999. With the barrier island restoration it was found that this risk is reduced to 7%.

Author(s):  
S. Caleb Douglas ◽  
Tyrel G. Wilson

Union Pacific Railroad’s Moffat Tunnel Subdivision, west of Denver, Colorado, was significantly impacted by an approximately 500 to 1,000 year storm event that occurred between September 9, 2013 and September 13, 2013. As a result of this historic event, washouts, earth slides, and debris flows severely impacted track infrastructure by eroding track embankments, destabilizing surrounding native slopes, and overwhelming stormwater infrastructure. Emergency response activities performed to restore track operations at Milepost (MP) 25.65 and MP 22.86 required the integration of civil, hydraulic, environmental and geotechnical engineering disciplines into emergency response and construction management efforts. Additionally, support from UPRR’s Real Estate Division was required when addressing private ownership and site access issues. The following text summarizes how coordinated efforts between various groups worked together in a pressure setting to restore rail service. The most significant damage occurred at MP 25.65 in a mountainous slot canyon between two tunnels accessible only by rail and consisted of a washout, approximately 200 feet (61 m) in length with a depth of 100 feet (30 m). MP 22.86 experienced slides on both sides of the track resulting in an unstable and near vertical track embankment which required significant fill and rock armoring. In addition to the embankment failures at MP 22.86, flood flows scoured around the underlying creek culvert, further threatening the geotechnical stability of the track embankment. The storm event highlighted the vulnerability of fill sections, where original construction used trestles. The repair plan engineered for MP 25.65 was developed to restore the lost embankment fill to near pre-flood conditions while limiting environmental impacts in order to minimize regulatory permitting requirements. Fill replacement performed during the initial emergency response was completed within 22 days, notwithstanding site remoteness and difficult access. Repair of the embankment required the placement of approximately 90,000 cubic yards (68,800 cubic meters) of fill and installation of four 48-inch (122-cm) culverts. Repair of embankment sloughing and scour damage at MP 22.86 was accomplished without the need for environmental permits by working from above the ordinary high water mark, using a “one track in – one track out” approach while restoring infrastructure to pre-flood conditions. A new headwall to address flow around the culvert inlet received expedited permit authorization from the U.S. Army Corps of Engineers by limiting the construction footprint through implementation of best management practices and minimizing placement of fill below the ordinary high water mark. Service interruptions, such as those at MP 22.86 and MP 25.65, require sound engineering practices that can be quickly and efficiently implemented during emergency response situations that often occur in less than ideal working environments. Track outages not only impact the efficiency of a railroad’s operating network, but also impact interstate and global commerce as transportation of goods are hindered. The need to have a team of experienced engineering and construction professionals responding to natural disasters was demonstrated by this storm event.


Author(s):  
Stephanie Smallegan ◽  
Evan Mazur

The numerical model XBeach is used to simulate hydrodynamics and morphological change of Bay Head, NJ, which is located on a developed barrier island. Bay Head is fronted with a seawall buried beneath its dunes, and the seawall has been shown to mitigate damage due to storm surge and waves during Hurricane Sandy (2012). The objective of this study is to re-evaluate the effectiveness of the seawall in mitigating damage from a synthetic storm and sea level rise, and refine an adaptation pathway previously created for Bay Head. Utilizing the wave and surge data generated from the North Atlantic Coast Comprehensive Study, synthetic Storm 391 is simulated using XBeach. Model results show the seawall is overtopped by storm surge and waves, causing overwash and reducing dune heights. As sea levels rise, the backbarrier region of the barrier island is severely eroded and the seawall acts as a barrier preventing elevated bay water levels from freely flowing across the island and into the ocean, exacerbating sediment transport on the backbarrier. To fully evaluate the capabilities and limitations of the seawall in mitigating storm damage, additional synthetic storms need to be simulated and the results re-evaluated. This will, in turn, lead to a comprehensive, more robust adaptation pathway for Bay Head.


2016 ◽  
Vol 11 (2) ◽  
pp. 373-383
Author(s):  
Majid Mirzaei ◽  
Mina Faghih ◽  
Tan Pei Ying ◽  
Ahmed El-Shafie ◽  
Yuk Feng Huang ◽  
...  

Rapid growth in recent decades has changed engineering concepts about the approach to controlling storm water in cities. Over the past years flood events have occurred more frequently in several countries in the tropics. In this study the behavior of Langat River in Malaysia was analyzed using the hydrodynamic modeling software (HEC-RAS) developed by the ‘Hydrologic Engineering Center, U.S. Army Corps of Engineers’, to simulate different water levels and flow rates corresponding to different return periods from the available database. The aim was to forecast peak flows, based on rainfall data and the maximum rate of precipitation in different return periods in storms of different duration. The maximum flows were obtained from the Automated Geospatial Watershed Assessment tool for the different return periods, and the peak flows from extreme rainfall were applied to HEC-RAS to simulate different water levels and flow rates corresponding to different return periods. The water level along the river and its tributaries could then be analyzed for different flow conditions.


2016 ◽  
Vol 16 (1) ◽  
pp. 167-180 ◽  
Author(s):  
G. Medellín ◽  
J. A. Brinkkemper ◽  
A. Torres-Freyermuth ◽  
C. M. Appendini ◽  
E. T. Mendoza ◽  
...  

Abstract. We present a downscaling approach for the study of wave-induced extreme water levels at a location on a barrier island in Yucatán (Mexico). Wave information from a 30-year wave hindcast is validated with in situ measurements at 8 m water depth. The maximum dissimilarity algorithm is employed for the selection of 600 representative cases, encompassing different combinations of wave characteristics and tidal level. The selected cases are propagated from 8 m water depth to the shore using the coupling of a third-generation wave model and a phase-resolving non-hydrostatic nonlinear shallow-water equation model. Extreme wave run-up, R2%, is estimated for the simulated cases and can be further employed to reconstruct the 30-year time series using an interpolation algorithm. Downscaling results show run-up saturation during more energetic wave conditions and modulation owing to tides. The latter suggests that the R2% can be parameterized using a hyperbolic-like formulation with dependency on both wave height and tidal level. The new parametric formulation is in agreement with the downscaling results (r2  =  0.78), allowing a fast calculation of wave-induced extreme water levels at this location. Finally, an assessment of beach vulnerability to wave-induced extreme water levels is conducted at the study area by employing the two approaches (reconstruction/parameterization) and a storm impact scale. The 30-year extreme water level hindcast allows the calculation of beach vulnerability as a function of return periods. It is shown that the downscaling-derived parameterization provides reasonable results as compared with the numerical approach. This methodology can be extended to other locations and can be further improved by incorporating the storm surge contributions to the extreme water level.


Author(s):  
Katherine A. Serafin ◽  
Peter Ruggiero ◽  
Kai A. Parker ◽  
David F. Hill

Abstract. Extreme water levels driving flooding in estuarine and coastal environments are often compound events, generated by many individual processes like waves, storm surge, streamflow, and tides. Despite this, extreme water levels are typically modeled in isolated open coast or estuarine environments, potentially mischaracterizing the true risk to flooding facing coastal communities. We explore the variability of extreme water levels near the tribal community of La Push, within the Quileute Indian Reservation on the Washington state coast where a river signal is apparent in tide gauge measurements during high discharge events. To estimate the influence of multivariate forcing on high water levels, we first develop a methodology for statistically simulating discharge and river-influenced water levels in the tide gauge. Next, we merge probabilistic simulations of joint still water level and discharge occurrences with a hydraulic model that simulates along-river water levels. This methodology produces water levels from thousands of combinations of events not necessarily captured in the observational record. We show that the 100-yr ocean or 100-yr streamflow event does not always produce the 100-yr along-river water level. Along specific sections of river, both still water level and streamflow are necessary for producing the 100-yr water level. Understanding the relative forcing of extreme water levels along an ocean-to-river gradient will better prepare communities within inlets and estuaries for the compounding impacts of various environmental forcing, especially when a combination of extreme or non-extreme forcing can result in an extreme event with significant impacts.


Author(s):  
Zhifei Dong ◽  
Nicole Elko ◽  
Quin Robertson ◽  
Julie Rosati

US Army Corps of Engineers Coastal Storm Risk Management (CSRM) projects have reduced coastal vulnerability and helped communities anticipate and mitigate toward improved resilience. This study proposes the Coastal Resilience Index (CRI) to quantify storm damage reduction benefits due to beach restoration projects in the context of resilience. The CRI considers metrics of the beach and dune system and disturbance factors such as storm surge and waves, using five non-dimensional factors: Protective Elevation (PE), Volume Density (VD), Protective Width (PW), Crest Freeboard (CF) and wave run-up (WR). The CRI is the summation of these five non-dimensional factors. This study developed a geographic information systems (GIS) based tool to automatically extract morphologic features from historic profiles and profiles extracted from LiDAR data to quantify beach resilience over time.


2019 ◽  
Vol 19 (7) ◽  
pp. 1415-1431 ◽  
Author(s):  
Katherine A. Serafin ◽  
Peter Ruggiero ◽  
Kai Parker ◽  
David F. Hill

Abstract. Extreme water levels generating flooding in estuarine and coastal environments are often driven by compound events, where many individual processes such as waves, storm surge, streamflow, and tides coincide. Despite this, extreme water levels are typically modeled in isolated open-coast or estuarine environments, potentially mischaracterizing the true risk of flooding facing coastal communities. This paper explores the variability of extreme water levels near the tribal community of La Push, within the Quileute Indian Reservation on the Washington state coast, where a river signal is apparent in tide gauge measurements during high-discharge events. To estimate the influence of multiple forcings on high water levels a hybrid modeling framework is developed, where probabilistic simulations of joint still water level and river discharge occurrences are merged with a hydraulic model that simulates along-river water levels. This methodology produces along-river water levels from thousands of combinations of events not necessarily captured in the observational records. We show that the 100-year still water level event and the 100-year discharge event do not always produce the 100-year along-river water level. Furthermore, along specific sections of river, both still water level and discharge are necessary for producing the 100-year along-river water level. Understanding the relative forcing driving extreme water levels along an ocean-to-river gradient will help communities within inlets better understand their risk to the compounding impacts of various environmental forcing, which is important for increasing their resilience to future flooding events.


2015 ◽  
Vol 3 (5) ◽  
pp. 3077-3117 ◽  
Author(s):  
G. Medellín ◽  
J. A. Brinkkemper ◽  
A. Torres-Freyermuth ◽  
C. M. Appendini ◽  
E. T. Mendoza ◽  
...  

Abstract. We present a downscaling approach for the study of wave-induced extreme water levels at a location on a barrier island in Yucatan (Mexico). Wave information from a 30 year wave hindcast is validated with in situ measurements at 8 m water depth. The Maximum Dissimilarity Algorithm is employed for the selection of 600 representative cases, encompassing different wave characteristics and tidal level combinations. The selected cases are propagated from 8 m water depth till the shore using the coupling of a third-generation wave model and a phase-resolving non-hydrostatic Nonlinear Shallow Water Equations model. Extreme wave runup, R2%, is estimated for the simulated cases and can be further employed to reconstruct the 30 year period using an interpolation algorithm. Downscaling results show runup saturation during more energetic wave conditions and modulation owing to tides. The latter suggests that the R2% can be parameterized using a hyperbolic-like formulation with dependency on both wave height and tidal level. The new parametric formulation is in agreement with the downscaling results (r2 = 0.78), allowing a fast calculation of wave-induced extreme water levels at this location. Finally, an assessment of beach vulnerability to wave-induced extreme water level is conducted at the study area by employing the two approaches (reconstruction/parametrization) and a storm impact scale. The 30 year extreme water level hindcast allows the calculation of beach vulnerability as a function of return periods. It is shown that the downscaling-derived parameterization provides reasonable results as compared with the numerical approach. This methodology can be extended to other locations and can be further improved by incorporating the storm surge contributions to the extreme water level.


Shore & Beach ◽  
2020 ◽  
pp. 65-71
Author(s):  
Whitney Thompson ◽  
Christopher Paul ◽  
John Darnall

Coastal Louisiana received significant funds tied to BP penalties as a result of the Deepwater Horizon incident. As it is widely considered that the State of Louisiana sustained most of the damage due to this incident, there has been a firm push to waste no time in implementing habitat restoration projects. Sustaining the land on the coast of Louisiana is vital to our nation’s economy, as several of the nation’s largest ports are located on the Gulf coast in Louisiana. In addition, the ecosystems making up the Louisiana coast are important to sustain some of the largest and most valuable fisheries in the nation. Funded by BP Phase 3 Early Restoration, the goals of the Natural Resource Damage Assessment (NRDA) Outer Coast Restoration Project are to restore beach, dune, and marsh habitats to help compensate spill-related injuries to habitats and species, specifically brown pelicans, terns, skimmers, and gulls. Four island components in Louisiana were funded under this project; Shell Island Barrier Restoration, Chenier Ronquille Barrier Island Restoration, Caillou Lake Headlands Barrier Island Restoration, and North Breton Island Restoration (https://www. gulfspillrestoration.noaa.gov/louisiana-outer-coast-restoration, NOAA 2018). Shell Island and Chenier Ronquille are critical pieces of barrier shoreline within the Barataria Basin in Plaquemines Parish, Louisiana. These large-scale restoration projects were completed in the years following the Deepwater Horizon incident, creating new habitat and reinforcing Louisiana’s Gulf of Mexico shoreline. The Louisiana Coastal Protection and Restoration Authority (CPRA) finished construction of the Shell Island NRDA Restoration Project in 2017, which restored two barrier islands in Plaquemines Parish utilizing sand hydraulically dredged from the Mississippi River and pumped via pipeline over 20 miles over levees and through towns, marinas, and marshes to the coastline. The National Marine Fisheries Service (NMFS) also completed the Plaquemines Parish barrier island restoration at Chenier Ronquille in 2017 utilizing nearshore Gulf of Mexico sediment, restoring wetland, coastal, and nearshore habitat in the Barataria Basin. A design and construction overview is provided herein.


Shore & Beach ◽  
2020 ◽  
pp. 102-109
Author(s):  
Syed Khalil ◽  
Beth Forrest ◽  
Mike Lowiec ◽  
Beau Suthard ◽  
Richard Raynie ◽  
...  

The System Wide Assessment and Monitoring Program (SWAMP) was implemented by the Louisiana Coastal Protection and Restoration Authority (CPRA) to develop an Adaptive Management Implementation Plan (AMIP). SWAMP ensures that a comprehensive network of coastal data collection/monitoring activities is in place to support the development and implementation of Louisiana’s coastal protection and restoration program. Monitoring of physical terrain is an important parameter of SWAMP. For the first time a systematic approach was adopted to undertake a geophysical (bathymetric, side-scan sonar, sub-bottom profile, and magnetometer) survey along more than 5,000 nautical miles (nm) (excluding the 1,559 nm currently being surveyed from west of Terrebonne Bay to Sabine Lake) of track-line in almost all of the bays and lakes from Chandeleur Sound in the east to Terrebonne Bay in the west. This data collection effort complements the regional bathymetric survey undertaken under the Barrier Island Comprehensive Monitoring (BICM) Program in the adjacent offshore areas. This paper describes how a study of this magnitude was conceptualized, planned, and executed along the entire Louisiana coast. It is important to note that the initial intent was to collect bathymetric data only for numerical modelling for ecosystem restoration and storm surge prediction. Geophysical data were added for oyster identification and delineation. These first-order data also help comprehend the regional subsurface geology essential for sediment exploration to support Louisiana’s marsh and barrier island restoration projects.


Sign in / Sign up

Export Citation Format

Share Document