scholarly journals MORPHOLOGICAL MODELING OF A HIGHLY DYNAMIC TIDAL INLET AT SHIPPAGAN GULLY, CANADA

2012 ◽  
Vol 1 (33) ◽  
pp. 108 ◽  
Author(s):  
Seth Logan ◽  
Ioan Nistor ◽  
Andrew Cornett ◽  
Thierry Faure ◽  
Alain Drouin

This paper is presenting the results of an extensive field and numerical modeling investigation of a morphologically dynamic tidal inlet. Shippagan Gully is a tidal inlet located near Shippagan, New-Brunswick, Canada, on the Gulf of Saint Lawrence. It is a particularly complex tidal inlet due to the fact that its tidal lagoon transects the Acadian peninsula and is open to the Bay des Chaleurs at its opposite end. As such, two open boundaries with phase lagged tidal cycles drive flow through the inlet, alternating direction with each tide and reaching velocities in excess of 2 m/s. Hydrodynamic and morphological processes at the site are further complicated by the presence of a highly variable wave climate. Presently, shipping practices through the inlet are limited due to continual sedimentation within and immediately offshore from Shippagan Gully. As such, an extensive field study, desktop analysis and numerical and morphological modeling of Shippagan Gully have been conducted in order to provide guidance for future works. Modeling was conducted using the CMS-Wave and CMS-Flow numerical modeling system. Sedimentation inside the inlet was shown to be ebb tide-induced deposition; while wave induced deposition was demonstrated elsewhere. The methodology and selected results of this study are presented herein.

1993 ◽  
Vol 37 (02) ◽  
pp. 102-118
Author(s):  
F. Stern ◽  
J. E. Choi ◽  
W. S. Hwang

Results are presented from a towing-tank experiment conducted in order to document the effects of waves on the wake of a surface-piercing body. A unique, simple model geometry is utilized which makes it possible to isolate and identify the most important features of the wave-induced effects. Measurements were made for three wave-steepness conditions: zero, medium, and large. The effects of the waves for the latter two conditions are shown to be significant. In particular, the variations of the external-flow pressure gradients cause acceleration and deceleration phases of the streamwise velocity component and alternating direction of the crossflow, which results in large oscillations of the displacement thickness and wake centerplane velocities as compared to the zero-steepness condition. Remarkably, the wake displays a greater response, that is, a bias with regard to favorable as compared to adverse pressure gradients. The measurements are compared and close agreement is demonstrated with results from Reynolds-averaged Navier-Stokes calculations. Additional calculations are presented, including laminar-flow results, which aid in explicating the characteristics of the near and intermediate wake, the periodic nature of the far wake, and wave-induced separation. Previously, experimental and computational results were presented for the boundary-layer region.


2013 ◽  
Vol 75 ◽  
pp. 64-76 ◽  
Author(s):  
Kasper Kaergaard ◽  
Jørgen Fredsoe

2016 ◽  
Vol 52 (3) ◽  
pp. 1591-1606 ◽  
Author(s):  
Ylva Sjöberg ◽  
Ethan Coon ◽  
A. Britta K. Sannel ◽  
Romain Pannetier ◽  
Dylan Harp ◽  
...  

2021 ◽  
Author(s):  
Chinglen Meetei Tensubam ◽  
Alexander V. Babanin

<p>The role of surface ocean waves becomes substantial in the upper ocean layer mixing. Due to turbulence induced by the surface waves (both broken and unbroken waves), the upper ocean mixing is enhanced, and important upper ocean parameters are affected such as lowering of sea surface temperature (SST), deepening of mixed layer depth (MLD) and most interestingly, the changes in oceanic biogeochemistry. The main objective of this study is to analyze the effect of wave induced turbulence on oceanic biogeochemistry such as the supply and distribution of nutrients to tiny plants in the ocean called phytoplanktons, and how it affects their concentrations. Marine phytoplanktons formed the basis of marine ecosystem which accounts for about 45 percent of global net primary productivity and play an important part in global carbon cycle. The population of phytoplanktons depends mainly on nutrients (both micro and macro), availability of sunlight and grazing organisms. For this study, we use global coupled ocean-sea ice model ACCESS-OM2 with biogeochemical module called WOMBAT to estimate the effect of wave induced turbulence and study the difference between ‘with waves’ and ‘without waves’ effect on oceanic biogeochemistry. The same effect of wave induced turbulence on oceanic biogeochemistry are also studied by incorporating the change in wave climate such as increase in significant wave height and wind speed. From the investigation of merged satellite ocean color data from ESA’s GlobColour project for the period of 23 years between 1997 and 2019, it was found that chlorophyll-a (Chl-a, an index of phytoplankton biomass) concentration showed increasing trend of 0.015 mg/m3 globally and 0.062 mg/m3 in the Southern Ocean (SO) for the study period with p-value less than 0.01. It was also found that most of the increasing trends are shown spatially in the open ocean and decreasing trend in the coastal regions during the study period.</p>


2007 ◽  
Vol 79 (2) ◽  
pp. 333-341 ◽  
Author(s):  
Abílio C.S.P. Bittencourt ◽  
José M.L. Dominguez ◽  
Louis Martin ◽  
Iracema R. Silva ◽  
Karla O.P. de-Medeiros

This paper presents a numerical modeling estimation of the sediment dispersion patterns caused by waves inciding through four distinct coastline contours of the delta plain of the Doce River during the Late Holocene. For this, a wave climate model based on the construction of wave refraction diagrams, as a function of current boundary conditions, was defined and was assumed to be valid for the four coastlines. The numerical modeling was carried out on basis of the refraction diagrams, taking into account the angle of approximation and the wave height along the coastline. The results are shown to be comparable with existing data regarding the directions of net longshore drift of sediments estimated from the integration of sediment cores, interpretation of aerial photographs and C14 datings. This fact apparently suggests that, on average, current boundary conditions appear to have remained with the same general characteristics since 5600 cal yr BP to the present. The used approach may prove useful to evaluate the sediment dispersion patterns during the Late Holocene in the Brazilian east-northeast coastal region.


2020 ◽  
Vol 8 (11) ◽  
pp. 877
Author(s):  
Johan Risandi ◽  
Dirk P. Rijnsdorp ◽  
Jeff E. Hansen ◽  
Ryan J. Lowe

The non-hydrostatic wave-flow model SWASH was used to investigate the hydrodynamic processes at a reef fringed pocket beach in southwestern Australia (Gnarabup Beach). Gnarabup Beach is a ~1.5 km long beach with highly variable bathymetry that is bounded by rocky headlands. The site is also exposed to large waves from the Southern Ocean. The model performance was evaluated using observations collected during a field program measuring waves, currents and water levels between June and July 2017. Modeled sea-swell wave heights (periods 5–25 s), infragravity wave heights (periods 25–600 s), and wave-induced setup exhibited moderate to good agreement with the observations throughout the model domain. The mean currents, which were highly-spatially variable across the study site, were less accurately predicted at most sites. Model agreement with the observations tended to be the worst in the areas with the most uncertain bathymetry (i.e., areas where high resolution survey data was not available). The nearshore sea-swell wave heights, infragravity wave heights and setup were strongly modulated by the offshore waves. The headlands and offshore reefs also had a strong impact on the hydrodynamics within the lagoon (bordered by the reefs) by dissipating much of the offshore sea-swell wave energy and modifying the pattern of the nearshore flows (magnitude and direction). Wave breaking on the reef platforms drove strong onshore directed mean currents over the reefs, resulting in off-shore flow through channels between the reefs and headlands where water exchanges from the lagoon to ocean. Our results demonstrate that the SWASH model is able to produce realistic predictions of the hydrodynamic processes within bathymetrically-complex nearshore systems.


Author(s):  
Ahmad Shafee ◽  
M. Sheikholeslami ◽  
M. Jafaryar ◽  
Fatih Selimefendigil ◽  
M. M. Bhatti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document