scholarly journals Source Enumeration Method using Eigenvalue Gap Ratio and Performance Comparison in Rayleigh Fading

Author(s):  
Taeyoung Kim ◽  
Yunseong Lee ◽  
Chanhong Park ◽  
Yeongyoon Choi ◽  
Kiseon Kim ◽  
...  

In electronic warfare, source enumeration and direction-of-arrival estimation are important. The source enumeration method based on eigenvalues of covariance matrix from received is one of the most used methods. However, there are some drawbacks such as accuracy less than 100 % at high SNR, poor performance at low SNR and reduction of maximum number of estimating sources. We suggested new method based on eigenvalues gaps, which is named AREG(Accumulated Ratio of Eigenvalues Gaps). Meanwhile, FGML(Fast Gridless Maximum Likelihood) which reconstructs the covariance matrix was suggested by Wu et al., and it improves performance of the existing source enumeration methods without modification of algorithms. In this paper, first, we combine AREG with FGML to improve the performance. Second, we compare the performance of source enumeration and direction-of-arrival estimation methods in Rayleigh fading. Third, we suggest new method named REG(Ratio of Eigenvalues Gaps) to reduce performance degradation in Rayleigh Fading environment of AREG.

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4403
Author(s):  
Ji Woong Paik ◽  
Joon-Ho Lee ◽  
Wooyoung Hong

An enhanced smoothed l0-norm algorithm for the passive phased array system, which uses the covariance matrix of the received signal, is proposed in this paper. The SL0 (smoothed l0-norm) algorithm is a fast compressive-sensing-based DOA (direction-of-arrival) estimation algorithm that uses a single snapshot from the received signal. In the conventional SL0 algorithm, there are limitations in the resolution and the DOA estimation performance, since a single sample is used. If multiple snapshots are used, the conventional SL0 algorithm can improve performance in terms of the DOA estimation. In this paper, a covariance-fitting-based SL0 algorithm is proposed to further reduce the number of optimization variables when using multiple snapshots of the received signal. A cost function and a new null-space projection term of the sparse recovery for the proposed scheme are presented. In order to verify the performance of the proposed algorithm, we present the simulation results and the experimental results based on the measured data.


2021 ◽  
Vol 11 ◽  
pp. 143-150
Author(s):  
Vinod Kumar ◽  
Sanjeev Kumar Dhull

The direction of arrival estimation is the main key problem in array signal processing. In this paper, the alternating projection maximum Likelihood (AP-ML), Alternating projection sub space framework (APSSF) and ESPRIT algorithm are studied. The simulation is performed in MATLAB for single and multiple sources. The effect of the varying number of spacing between antenna elements, number of snapshots and SNR are studied. The performance comparison shows that ESPRIT algorithm performs better as compared to the AP-ML and AP-SSF. Key-Words: - AP-ML, AP-SSF, Direction of Arrival, ESPRIT, Snapshots, SNR


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3556
Author(s):  
Piotr Grall ◽  
Iwona Kochanska ◽  
Jacek Marszal

Nowadays, there are two leading sea sounding technologies: the multibeam echo sounder and the multiphase echo sounder (also known as phase-difference side scan sonar or bathymetric side scan sonar). Both solutions have their advantages and disadvantages, and they can be perceived as complementary to each other. The article reviews the development of interferometric echo sounding array configurations and the various methods applied to determine the direction-of-arrival. “Interferometric echo sounder” is a broad term, applied to various devices that primarily utilize phase difference measurements to estimate the direction-of-arrival. The article focuses on modifications to the interferometric sonar array that have led to the state-of-the-art multiphase echo sounder. The main algorithms for classical and modern interferometric echo sounder direction-of-arrival estimation are also outlined. The accuracy of direction-of-arrival estimation methods is dependent on the configuration of the array and external and internal noise sources. The main sources of errors, which influence the accuracy of the phase difference measurements, are also briefly characterized. The article ends with a review of the current research into improvements in the accuracy of interferometric echo sounding and the application of the principle of interferometric in other devices.


Sign in / Sign up

Export Citation Format

Share Document