Research on High Ductility and High Strength Wire Manufacturing Technology by Alternate Wire Drawing

2017 ◽  
Vol 58 (683) ◽  
pp. 1113-1114
Author(s):  
Hidetoshi NAGASHIMA
2016 ◽  
Vol 716 ◽  
pp. 13-21 ◽  
Author(s):  
Vladimir Stefanov Hristov ◽  
Kazunari Yoshida

In recent years, due to its low density and high strength/weight ratio, magnesium alloy wires has been considered for application in many fields, such as welding, electronics, medical field (for production of stents). But for those purposes, we need to acquire wires with high strength and ductility. For that we purpose we proposed alternate drawing method, which is supposed to highly decrease the shearing strain near the surface of the wire after drawing, by changing the direction of the wire drawing with each pass and thus acquiring high ductility wires.We have done research on the cold alternate drawing of magnesium alloy wires, by conducting wire drawing of several magnesium wires and testing their strength, hardness, structure, surface and also finite element analysis, we have proven the increase of ductility at the expense of some strength.In this research we are looking to further improve the quality of the drawn wires by examining the benefits of using diamond dies over tungsten carbine dies. Using the alternate drawing method reduces the strength of the drawn wires and thus lowering their drawing limit. By using diamond dies we are aiming to decrease the drawing stress and further increase the drawing limit of the alternate drawn wires and also improve the quality of the finishing surface of the wires. With this in mind we are aiming to produce a good quality wire with low diameter, high ductility, high strength and fine wire surface.


Alloy Digest ◽  
1956 ◽  
Vol 5 (6) ◽  

Abstract DUCTALLOY is a high-carbon ferrous material having high strength, high ductility, toughness and machinability. It is supplied in three grades: pearlitic grade 80, ferritic grade 60, and austenitic grade A50. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and fatigue. It also includes information on high temperature performance as well as heat treating, machining, and joining. Filing Code: CI-14. Producer or source: American Brake Shoe Company.


Alloy Digest ◽  
1977 ◽  
Vol 26 (2) ◽  

Abstract Copper Alloy No. 165 is a copper-cadmium-tin alloy with low strength and high ductility in the annealed condition. In the hard-drawn condition, characterized by high strength and low ductility, it is used widely as an electrical conductor. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-327. Producer or source: Copper and copper alloy mills.


Alloy Digest ◽  
1969 ◽  
Vol 18 (9) ◽  

Abstract IN-102 is a nickel-chromium-iron alloy designed for long service at temperatures up to 1300 F. It combines high strength and high ductility at the elevated temperatures with a high degree of structural stability. It is used for aerospace, power and steam turbine components. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-147. Producer or source: International Nickel Company Inc..


Alloy Digest ◽  
1964 ◽  
Vol 13 (6) ◽  

Abstract Nivco 10 is a cobalt-base turbine alloy having a combination of high damping capacity, high strength and high ductility. It is a precipitation hardening alloy recommended for use at temperatures up to 1200 F, such as turbine blades. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness, creep, and fatigue. It also includes information on forming, heat treating, machining, and joining. Filing Code: Co-37. Producer or source: Westinghouse Electric Corporation.


2020 ◽  
Author(s):  
O. Trudonoshyn ◽  
O. Prach ◽  
P. Randelzhofer ◽  
K. Durst ◽  
С. Körner

2015 ◽  
Vol 68 ◽  
pp. 94-104 ◽  
Author(s):  
Ravi Ranade ◽  
Victor C. Li ◽  
William F. Heard

2021 ◽  
Vol 1035 ◽  
pp. 801-807
Author(s):  
Xiao Lei Yin ◽  
Jian Cheng ◽  
Gang Zhao

High-strength cable-steel bridge is the “lifeline” of steel structure bridges, which requires high comprehensive mechanical properties, and cold-drawing is the most important process to produce high-strength cable-steel bridge. Therefore, through the ABAQUS platform, a bridge wire drawing model was established, and the simulation analysis on the process of stress strain law and strain path trends for high-strength bridge steel wire from Φ 12.65 mm by seven cold-drawing to Φ 6.90 mm was conducted. The simulation results show that the wire drawing the heart of the main axial deformation, surface and sub-surface of the main axial and radial deformation occurred, with the increase in the number of drawing the road, the overall deformation of the wire was also more obvious non-uniformity. In the single-pass drawing process, the change in the potential relationship of each layer of material was small, and multiple inflection points appeared in the strain path diagram; the change in the seven-pass potential relationship was more drastic, which can basically be regarded as a simple superposition of multiple single-pass pulls.


2016 ◽  
Vol 667 ◽  
pp. 179-188 ◽  
Author(s):  
Aiying Chen ◽  
Jiabin Liu ◽  
Hongtao Wang ◽  
Jian Lu ◽  
Y. Morris Wang

Sign in / Sign up

Export Citation Format

Share Document