Immobilization of By-products of Sulfur Hexafluoride (SF 6 ) Decomposition in the Presence of Bead-Type Calcium Oxide (CaO) Using High-Temperature Kiln Furnace

2021 ◽  
Vol 38 (6) ◽  
pp. 535-544
Author(s):  
Jong Bum Kim ◽  
Jae Yong Ryu
2015 ◽  
Vol 14 (4) ◽  
pp. 164-172 ◽  
Author(s):  
Jacek M. Łączny ◽  
Sebastian Iwaszenko ◽  
Krzysztof Gogola ◽  
Andrzej Bajerski ◽  
Tomasz Janoszek ◽  
...  

2014 ◽  
Vol 12 (1) ◽  
pp. 639-664 ◽  
Author(s):  
Samrand Saeidi ◽  
Masoud Talebi Amiri ◽  
Nor Aishah Saidina Amin ◽  
Mohammad Reza Rahimpour

Abstract High-temperature Fischer–Tropsch (HTFT) process aims to produce lighter cuts such as gasoline and diesel. For many years there have been studies and improvements on HTFT process to make the existing reactors more efficient. Recent studies proposed new configurations such as dual-type membrane reactor and coupling configurations reactor, which improved the performances of this process. This achievement persuades us to update the existing knowledge about the available reactors for HTFT process. In this article, features and performances overview of two classes of reactors are reviewed. The first class consists of the reactors which are based on older studies, and the second one includes recent studies which are called product intensifier reactors. Finally, it is shown that the product intensifier reactors have higher CO conversions and lower selectivity of undesired by-products which results in higher production yield of gasoline. Furthermore, the place of product intensifier reactor among common reactors with regard to the influence of the process parameters on the product distribution has been estimated.


2013 ◽  
Vol 723 ◽  
pp. 609-616
Author(s):  
Wei Chien Wang ◽  
Chih Chien Liu ◽  
Chau Lee

The furnace slag are the by-products of the steel industry, the main ingredients are the oxide of calcium, alumina and magnesium, and some silica. Slag used as concrete aggregate could cause the problem of the volume expansion of concrete. The expansion problem may be produced by ASR or free calcium oxide and magnesium oxide in slag. This research stabilizing the non-ASR reactive slag using steam treatment analyzes the effectiveness of steam treating technique inhibiting the expansive problem for slag used in concrete. And this paper also discusses the effect of the steam treating time on the performance of inhibiting the expansive problem.


2021 ◽  
Vol 14 (4) ◽  
Author(s):  
Jacek M. Łączny ◽  
Sebastian Iwaszenko ◽  
Krzysztof Gogola ◽  
Andrzej Bajerski ◽  
Tomasz Janoszek ◽  
...  

Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1450
Author(s):  
Daniel Fernández-González ◽  
Juan Piñuela-Noval ◽  
Luis Felipe Verdeja

Solar energy when properly concentrated offers a great potential in high temperature applications as those required in metallurgical processes. Even when concentrated solar energy cannot compete with conventional metallurgical processes, it could find application in the treatment of wastes from these processes. These by-products are characterized by their high metallic contents, which make them interesting as they could be a raw material available in the own factory. Slags are one of these by-products. Slags are most of them disposed in controlled landfill with environmental impact, but also with economic impact associated to the storing costs and the metallic losses. Here we propose the treatment of ferromanganese and silicomanganese slags with concentrated solar energy with the purpose of evaluating the recovery of manganese from these slags.


2016 ◽  
Vol 4 (46) ◽  
pp. 17913-17932 ◽  
Author(s):  
Wang Hay Kan ◽  
Alfred Junio Samson ◽  
Venkataraman Thangadurai

High temperature electrochemical devices, such as solid oxide fuel cells (SOFCs), will play a vital role in the future green and sustainable energy industries due to direct utilization of carbon-based fuels and their ability to couple with renewable energies to convert by-products into valuable fuels using solid oxide electrolysis cells (SOECs).


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3885
Author(s):  
Wenhuan Liu ◽  
Hui Li ◽  
Huimei Zhu ◽  
Pinjing Xu

In this paper, a permeable steel-slag–bitumen mixture (PSSBM) was first prepared according to the designed mixture ratio. Then, the interaction characteristics between steel slag and bitumen were studied. The chemical interaction between bitumen and steel slag was explored with a Fourier-transform infrared spectrometer (FT-IR). The influence of steel-slag chemistry, mineral composition, and bitumen reaction on phase angle, complex shear modulus (CSM), and rutting factor was explored with dynamic shear rheological (DSR) tests. The PSSBM had better properties, including high permeability, water stability, Marshall stability, high-temperature (HT) stability, and low volume-expansion rate. Bitumen-coated steel slag can prevent heavy-metal ions from leaching. In the infrared spectra of the mixture of a chemical component of steel slag (calcium oxide) and bitumen, a new absorption peak at 3645 cm−1 was ascribed to the SiO–H stretching vibration, indicating that new organic silicon compounds were produced in the chemical reaction between calcium oxide and bitumen. SiO–H had an obvious enhancement effect on the interfacial adhesion and high-temperature rheological property of the mixture. In the mineral components of steel slag, dicalcium and tricalcium silicate reacted with bitumen and generated new substances. Chemical reactions between tricalcium silicate and bitumen were significant and had obvious enhancement effects on interfacial adhesion and high-temperature rheological properties of the mixture. The results of FT-IR and DSR were basically consistent, which revealed the chemical-reaction mechanism between steel-slag microcomponents and bitumen at the interface. SEM results showed that pits and grooves on the surface of the steel-slag aggregate, and the textural characteristics provide a framework-like function, thus strengthening the strength and adhesion of the steel-slag–bitumen aggregate interface.


Sign in / Sign up

Export Citation Format

Share Document