scholarly journals Diatom biochronology of the horizon of warm water calcareous microfossils in the upper Miocene Funakawa Formation distributed in Shimo-arakawa, Daisen City, Akita Prefecture, Japan.

2021 ◽  
Vol 72 (6) ◽  
pp. 459-477
Author(s):  
Yukio YANAGISAWA
1989 ◽  
Vol 4 ◽  
pp. 99-100 ◽  
Author(s):  
Jean M. Berdan

The described techniques for extraction of microfossils are directed primarily at the extraction of calcareous microfossils from various types of limestone, although the same techniques may beused for some sandstones and shales. The equipment needed is not complicated; the most obvious is a good binocular microscope with a working distance of three or more inches, to allow manipulation of the rock from which the specimens are to be extracted. The magnification required depends on the size of the specimens, but should go up to at least 80x. Other essential tools are a pin vise with a chuck which will hold an ordinary steel sewing needle and a rotary dental machine or other grinding device which will accept a small thin carborundum wheel. The latter is useful for sharpening needles as well as for cutting specimens out of the rock. An additional useful item is a percussive device such as a mechanical engraver fitted with a chuck which will hold an old fashioned steel phonograph needle. This instrument is described in detail by Palmer (this volume, chapter 20). A dish of water and a fine (00000) camel's hairbrush are necessary to move the specimens, once freed, to a slide or other receptacle. A rock trimmer is useful for reducing large blocks of fossiliferous rock into pieces that can be handled under the microscope, although with some collections this can be done with a hammer and cold chisel. Some paleontologists prefer to crush their samples and then pick through the chips to find specimens; however, this technique tends to break spines and frills from highly ornamented forms and is not recommended unless the microfauna is known to consist mostly of smooth species. Most of the equipment mentioned above can be found in catalogs such as that of the Edmund Scientific Co., 101 E. Gloucester Pike, Barrington, N.J. 08007.


2012 ◽  
Vol 50 (08) ◽  
Author(s):  
T Rabenstein ◽  
F Radaelli ◽  
O Zolk

2016 ◽  
Vol 39 ◽  
pp. 142-145
Author(s):  
Fabio Laiena ◽  
Lorenzo Fedele ◽  
Ioan Seghedi ◽  
Vincenzo Morra

2020 ◽  
Vol 642 ◽  
pp. 133-146
Author(s):  
PC González-Espinosa ◽  
SD Donner

Warm-water growth and survival of corals are constrained by a set of environmental conditions such as temperature, light, nutrient levels and salinity. Water temperatures of 1 to 2°C above the usual summer maximum can trigger a phenomenon known as coral bleaching, whereby disruption of the symbiosis between coral and dinoflagellate micro-algae, living within the coral tissue, reveals the white skeleton of coral. Anomalously cold water can also lead to coral bleaching but has been the subject of limited research. Although cold-water bleaching events are less common, they can produce similar impacts on coral reefs as warm-water events. In this study, we explored the effect of temperature and light on the likelihood of cold-water coral bleaching from 1998-2017 using available bleaching observations from the Eastern Tropical Pacific and the Florida Keys. Using satellite-derived sea surface temperature, photosynthetically available radiation and light attenuation data, cold temperature and light exposure metrics were developed and then tested against the bleaching observations using logistic regression. The results show that cold-water bleaching can be best predicted with an accumulated cold-temperature metric, i.e. ‘degree cooling weeks’, analogous to the heat stress metric ‘degree heating weeks’, with high accuracy (90%) and fewer Type I and Type II errors in comparison with other models. Although light, when also considered, improved prediction accuracy, we found that the most reliable framework for cold-water bleaching prediction may be based solely on cold-temperature exposure.


Author(s):  
Larisa A. Pautova ◽  
Vladimir A. Silkin ◽  
Marina D. Kravchishina ◽  
Valeriy G. Yakubenko ◽  
Anna L. Chultsova

The structure of the summer planktonic communities of the Northern part of the Barents sea in the first half of August 2017 were studied. In the sea-ice melting area, the average phytoplankton biomass producing upper 50-meter layer of water reached values levels of eutrophic waters (up to 2.1 g/m3). Phytoplankton was presented by diatoms of the genera Thalassiosira and Eucampia. Maximum biomass recorded at depths of 22–52 m, the absolute maximum biomass community (5,0 g/m3) marked on the horizon of 45 m (station 5558), located at the outlet of the deep trench Franz Victoria near the West coast of the archipelago Franz Josef Land. In ice-free waters, phytoplankton abundance was low, and the weighted average biomass (8.0 mg/m3 – 123.1 mg/m3) corresponded to oligotrophic waters and lower mesotrophic waters. In the upper layers of the water population abundance was dominated by small flagellates and picoplankton from, biomass – Arctic dinoflagellates (Gymnodinium spp.) and cold Atlantic complexes (Gyrodinium lachryma, Alexandrium tamarense, Dinophysis norvegica). The proportion of Atlantic species in phytoplankton reached 75%. The representatives of warm-water Atlantic complex (Emiliania huxleyi, Rhizosolenia hebetata f. semispina, Ceratium horridum) were recorded up to 80º N, as indicators of the penetration of warm Atlantic waters into the Arctic basin. The presence of oceanic Atlantic species as warm-water and cold systems in the high Arctic indicates the strengthening of processes of “atlantificacion” in the region.


Sign in / Sign up

Export Citation Format

Share Document