pick’s disease
Recently Published Documents


TOTAL DOCUMENTS

378
(FIVE YEARS 15)

H-INDEX

48
(FIVE YEARS 2)

Brain ◽  
2021 ◽  
Author(s):  
Masato Hosokawa ◽  
Masami Masuda-Suzukake ◽  
Hiroshi Shitara ◽  
Aki Shimozawa ◽  
Genjiro Suzuki ◽  
...  

Abstract The phenomenon of "prion-like propagation" in which aggregates of abnormal amyloid-fibrilized protein propagate between neurons and spread pathology, is attracting attention as a new mechanism in neurodegenerative diseases. There is a strong correlation between the accumulation or spread of abnormal tau aggregates and the clinical symptoms of tauopathies. Microtubule-associated protein of tau contains a microtubule-binding domain which consists of 3-repeats or 4-repeats due to alternative mRNA splicing of transcripts for the Microtubule-associated protein of tau gene. Although a number of models for tau propagation have been reported, most utilize 4-repeat human tau transgenic mice or adult wild-type mice expressing only endogenous 4-repeat tau and these models have not been able to reproduce the pathology of Alzheimer's disease in which 3-repeat and 4-repeat tau accumulate simultaneously, or that of Pick’s disease in which only 3-repeat tau is aggregated. These deficiencies may reflect differences between human and rodent tau isoforms in the brain. To overcome this problem, we used genome editing techniques to generate mice that express an equal ratio of endogenous 3-repeat and 4-repeat tau, even after they become adults. We injected these mice with sarkosyl-insoluble fractions derived from the brains of human tauopathy patients such as those afflicted with Alzheimer’s disease (3- and 4-repeat tauopathy), corticobasal degeneration (4-repeat tauopathy) or Pick’s disease (3-repeat tauopathy). At 8-9 months following intracerebral injection of mice, histopathological and biochemical analyses revealed that the abnormal accumulation of tau was seed-dependent, with 3- and 4-repeat tau in Alzheimer’s disease-injected brains, 4-repeat tau only in corticobasal degeneration-injected brains, and 3-repeat tau only in Pick disease-injected brains, all of which contained isoforms related to those found in the injected seeds. The injected abnormal tau was seeded, and accumulated at the site of injection and at neural connections, predominantly within the same site. The abnormal tau newly accumulated was found to be endogenous in these mice and to have crossed the species barrier. Of particular importance, Pick’s body-like inclusions were observed in Pick’s disease-injected mice, and accumulations characteristic of Pick’s disease were reproduced, suggesting that we have developed the first model that recapitulates the pathology of Pick’s disease. These models are not only useful for elucidating the mechanism of propagation of tau pathology involving both 3- and 4-repeat-isoforms, but can also reproduce the pathology of tauopathies, which should lead to the discovery of new therapeutic agents.


2021 ◽  
Vol 6 (26) ◽  
pp. 6733-6739
Author(s):  
Pritam Ghosh ◽  
Koushik Pramanik ◽  
Suparna Paul ◽  
Debanjan Dey ◽  
Swapan Kumar Chandra ◽  
...  

2020 ◽  
Vol 22 (1) ◽  
pp. 349
Author(s):  
Sushil K. Mishra ◽  
Yoshiki Yamaguchi ◽  
Makoto Higuchi ◽  
Naruhiko Sahara

In recent years, it has been realized that the tau protein is a key player in multiple neurodegenerative diseases. Positron emission tomography (PET) radiotracers that bind to tau filaments in Alzheimer’s disease (AD) are in common use, but PET tracers binding to tau filaments of rarer, age-related dementias, such as Pick’s disease, have not been widely explored. To design disease-specific and tau-selective PET tracers, it is important to determine where and how PET tracers bind to tau filaments. In this paper, we present the first molecular modelling study on PET probe binding to the structured core of tau filaments from a patient with Pick’s disease (TauPiD). We have used docking, molecular dynamics simulations, binding-affinity and tunnel calculations to explore TauPiD binding sites, binding modes, and binding energies of PET probes (AV-1451, MK-6240, PBB3, PM-PBB3, THK-5351 and PiB) with TauPiD. The probes bind to TauPiD at multiple surface binding sites as well as in a cavity binding site. The probes show unique surface binding patterns, and, out of them all, PM-PBB3 proves to bind the strongest. The findings suggest that our computational workflow of structural and dynamic details of the tau filaments has potential for the rational design of TauPiD specific PET tracers.


2020 ◽  
Vol 13 ◽  
Author(s):  
Giacomo Siano ◽  
Mariachiara Micaelli ◽  
Arianna Scarlatti ◽  
Valentina Quercioli ◽  
Cristina Di Primio ◽  
...  

Tauopathies are neurodegenerative disorders characterized by Tau aggregation. Genetic studies on familial cases allowed for the discovery of mutations in the MAPT gene that increase Tau propensity to detach from microtubules and to form insoluble cytoplasmic Tau aggregates. Recently, the rare mutation Q336H has been identified to be associated with Pick’s disease (PiD) and biochemical analyses demonstrated its ability to increase the microtubules (MTs) polymerization, thus revealing an opposite character compared to other Tau mutations studied so far. Here we investigated the biophysical and molecular properties of TauQ336H in living cells by the employment of the conformational Tau biosensor CST. We found that this mutation alters Tau conformation on microtubules, stabilizes its binding to tubulin, and is associated with a paradoxical lower level of Tau phosphorylation. Moreover, we found that this mutation impacts the cytoskeletal complexity by increasing the tubulin filament length and the number of branches. However, despite these apparently non-pathological traits, we observed the formation of intracellular inclusions confirming that Q336H leads to aggregation. Our results suggest that the Tau aggregation process might be triggered by molecular mechanisms other than Tau destabilization or post-translational modifications which are likely to be detrimental to neuronal function in vivo.


Brain ◽  
2020 ◽  
Vol 143 (8) ◽  
pp. 2398-2405 ◽  
Author(s):  
Shinsuke Ishigaki ◽  
Yuichi Riku ◽  
Yusuke Fujioka ◽  
Kuniyuki Endo ◽  
Nobuyuki Iwade ◽  
...  

Abstract Fused in sarcoma (FUS) is genetically and clinicopathologically linked to frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). We have previously reported that intranuclear interactions of FUS and splicing factor, proline- and glutamine-rich (SFPQ) contribute to neuronal homeostasis. Disruption of the FUS-SFPQ interaction leads to an increase in the ratio of 4-repeat tau (4R-tau)/3-repeat tau (3R-tau), which manifests in FTLD-like phenotypes in mice. Here, we examined FUS-SFPQ interactions in 142 autopsied individuals with FUS-related ALS/FTLD (ALS/FTLD-FUS), TDP-43-related ALS/FTLD (ALS/FTLD-TDP), progressive supranuclear palsy, corticobasal degeneration, Alzheimer’s disease, or Pick’s disease as well as controls. Immunofluorescent imaging showed impaired intranuclear co-localization of FUS and SFPQ in neurons of ALS/FTLD-FUS, ALS/FTLD-TDP, progressive supranuclear palsy and corticobasal degeneration cases, but not in Alzheimer’s disease or Pick’s disease cases. Immunoprecipitation analyses of FUS and SFPQ revealed reduced interactions between the two proteins in ALS/FTLD-TDP and progressive supranuclear palsy cases, but not in those with Alzheimer disease. Furthermore, the ratio of 4R/3R-tau was elevated in cases with ALS/FTLD-TDP and progressive supranuclear palsy, but was largely unaffected in cases with Alzheimer disease. We concluded that impaired interactions between intranuclear FUS and SFPQ and the subsequent increase in the ratio of 4R/3R-tau constitute a common pathogenesis pathway in FTLD spectrum diseases.


2020 ◽  
Vol 39 (07) ◽  
pp. 152-161
Author(s):  
Jacqueline Mikol

2020 ◽  
Vol 267 (9) ◽  
pp. 2697-2704 ◽  
Author(s):  
Parichita Choudhury ◽  
Eugene L. Scharf ◽  
Michael A. Paolini ◽  
Jonathan Graff-Radford ◽  
Eva C. Alden ◽  
...  

2020 ◽  
Vol 412 ◽  
pp. 116752
Author(s):  
Yuto Uchida ◽  
Mari Yoshida ◽  
Koji Takada ◽  
Yasukuni Tsugu ◽  
Yoshino Ueki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document