mayetiola destructor
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 13)

H-INDEX

20
(FIVE YEARS 1)

Genome ◽  
2021 ◽  
Author(s):  
Wiem Ben Amara ◽  
Salma Djebbi ◽  
Wafa Ben Lazhar-Ajroud ◽  
Chahnez Naccache ◽  
Maha Khemakhem Mezghani

Mariner-like elements (MLEs) are class II transposons belonging to the Tc1-mariner family, that have successfully invaded many insect genomes. In the current study, the availability of the Hessian fly Mayetiola destructor genome has enabled us to perform in silico analysis of MLEs using as query the previously described mariner element (Desmar1) belonging to mauritiana subfamily. Eighteen mauritiana-like elements were detected and were clustered into three main groups named Desmar1-like, MauCons1 and MauCons2. Subsequently, in vitro analysis was carried out to investigate mauritiana-like elements in M. destructor as well as in Mayetiola hordei using primers designed from TIRs of the previously identified MLEs. PCR amplifications were successful and a total of 12 and 17 mauritiana-like elements were discovered in M. destructor and M. hordei, respectively. Sequence analyses of mauritiana-like elements obtained in silico and in vitro have showed that MauCons1 and MauCons2 elements share low similarity with Desmar1 ranging from 50% to 55% suggesting different groups under mauritiana subfamily have invaded the genomes of M. destructor and M. hordei. These groups are likely inherited by vertical transmission that subsequently underwent different evolutionary histories. This work describes new mauritiana-like elements in M. destructor that are distinct from the previouslydiscovered Desmar1 and provides the first evidence of MLEs belonging to mauritiana subfamily in M. hordei.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0257996
Author(s):  
Wiem Ben Amara ◽  
Hadi Quesneville ◽  
Maha Mezghani Khemakhem

The availability of the Whole-Genome Sequence of the wheat pest Mayetiola destructor offers the opportunity to investigate the Transposable Elements (TEs) content and their relationship with the genes involved in the insect virulence. In this study, de novo annotation carried out using REPET pipeline showed that TEs occupy approximately 16% of the genome and are represented by 1038 lineages. Class II elements were the most frequent and most TEs were inactive due to the deletions they have accumulated. The analyses of TEs ages revealed a first burst at 20% of divergence from present that mobilized many TE families including mostly Tc1/mariner and Gypsy superfamilies and a second burst at 2% of divergence, which involved mainly the class II elements suggesting new TEs invasions. Additionally, 86 TEs insertions involving recently transposed elements were identified. Among them, several MITEs and Gypsy retrotransposons were inserted in the vicinity of SSGP and chemosensory genes. The findings represent a valuable resource for more in-depth investigation of the TE impact onto M. destructor genome and their possible influence on the expression of the virulence and chemosensory genes and consequently the behavior of this pest towards its host plants.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rohollah Sadeghi ◽  
Steven Odubiyi ◽  
Atoosa Nikoukar ◽  
Kurtis L. Schroeder ◽  
Arash Rashed

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rohollah Sadeghi ◽  
Steven Odubiyi ◽  
Atoosa Nikoukar ◽  
Kurtis L. Schroeder ◽  
Arash Rashed

AbstractThe Hessian fly Mayetiola destructor (Diptera: Cecidmyiidae) is a major pest of wheat, globally. We conducted a series of laboratory choice and no-choice assays to quantify Hessian fly host preference for barley (cv. Champion), oat (cv. Cayuse), susceptible (cv. Alturas), and resistant (cv. Hollis) wheat. In addition, larval survivorship and adult emergence were compared among the evaluated host plants. We then examined whether insect preference for a host can be explained by differences in plant spectral reflectance. Further, larval survivorship and adult emergence were compared among host plants in relation to phytohormone concentrations. Hessian flies laid more eggs on wheat compared to either oat or barley. Spectral reflectance measurements of leaves were similar between susceptible and resistant wheat cultivars but different from those of barley and oat. Our results suggested that higher reflectance in the near-infrared range and lower reflectance in the visible range may be used by females for host selection. Hessian fly larvae were unable to develop into the pupal stage on resistant wheat and oat. No significant difference in larval survivorship was detected between the susceptible wheat and barley. However, adult emergence was significantly higher on barley than the susceptible wheat. Phytohormonal evaluations revealed that salicylic acid (SA) may be an important contributor to plant defense response to larval feeding as relatively higher concentrations of SA were present in oat and resistant wheat. While resistance in the resistant wheat is achieved only through antibiosis, both antibiosis and antixenosis were in effect rendering oat as a non-host for Hessian flies.


Author(s):  
Amira Cherif ◽  
Mohsen Rezgui ◽  
Faten Titouhi ◽  
Sondes Youssfi ◽  
Abir Soltani ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Lucio Navarro-Escalante ◽  
Chaoyang Zhao ◽  
Richard Shukle ◽  
Jeffrey Stuart

Insects ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 340
Author(s):  
Naima Bel Mokhtar ◽  
Amal Maurady ◽  
Mohammed Reda Britel ◽  
Mustapha El Bouhssini ◽  
Costas Batargias ◽  
...  

Mayetiola destructor (Hessian fly) is a destructive pest of wheat in several parts of the world. Here, we investigated the presence of reproductive symbionts and the effect of the geographical location on the bacterial community associated to adult Hessian flies derived from four major wheat producing areas in Morocco. Using specific 16S rDNA PCR assay, Wolbachia infection was observed in 3% of the natural populations and 10% of the laboratory population. High throughput sequencing of V3-V4 region of the bacterial 16S rRNA gene revealed that the microbiota of adult Hessian flies was significantly influenced by their native regions. A total of 6 phyla, 10 classes and 79 genera were obtained from all the samples. Confirming the screening results, Wolbachia was identified as well in the natural Hessian flies. Phylogenetic analysis using the sequences obtained in this study indicated that there is one Wolbachia strain belonging to supergroup A. To our knowledge, this is the first report of Wolbachia in Hessian fly populations. The observed low abundance of Wolbachia most likely does not indicate induction of reproductive incompatibility. Yet, this infection may give a new insight into the use of Wolbachia for the fight against Hessian fly populations.


Sign in / Sign up

Export Citation Format

Share Document