scholarly journals Results on Martin’s Conjecture

2021 ◽  
Vol 27 (2) ◽  
pp. 219-220
Author(s):  
Patrick Lutz

AbstractMartin’s conjecture is an attempt to classify the behavior of all definable functions on the Turing degrees under strong set theoretic hypotheses. Very roughly it says that every such function is either eventually constant, eventually equal to the identity function or eventually equal to a transfinite iterate of the Turing jump. It is typically divided into two parts: the first part states that every function is either eventually constant or eventually above the identity function and the second part states that every function which is above the identity is eventually equal to a transfinite iterate of the jump. If true, it would provide an explanation for the unique role of the Turing jump in computability theory and rule out many types of constructions on the Turing degrees.In this thesis, we will introduce a few tools which we use to prove several cases of Martin’s conjecture. It turns out that both these tools and these results on Martin’s conjecture have some interesting consequences both for Martin’s conjecture and for a few related topics.The main tool that we introduce is a basis theorem for perfect sets, improving a theorem due to Groszek and Slaman. We also introduce a general framework for proving certain special cases of Martin’s conjecture which unifies a few pre-existing proofs. We will use these tools to prove three main results about Martin’s conjecture: that it holds for regressive functions on the hyperarithmetic degrees (answering a question of Slaman and Steel), that part 1 holds for order preserving functions on the Turing degrees, and that part 1 holds for a class of functions that we introduce, called measure preserving functions.This last result has several interesting consequences for the study of Martin’s conjecture. In particular, it shows that part 1 of Martin’s conjecture is equivalent to a statement about the Rudin-Keisler order on ultrafilters on the Turing degrees. This suggests several possible strategies for working on part 1 of Martin’s conjecture, which we will discuss.The basis theorem that we use to prove these results also has some applications outside of Martin’s conjecture. We will use it to prove a few theorems related to Sacks’ question about whether it is provable in $\mathsf {ZFC}$ that every locally countable partial order of size continuum embeds into the Turing degrees. We will show that in a certain extension of $\mathsf {ZF}$ (which is incompatible with $\mathsf {ZFC}$ ), this holds for all partial orders of height two, but not for all partial orders of height three. Our proof also yields an analogous result for Borel partial orders and Borel embeddings in $\mathsf {ZF}$ , which shows that the Borel version of Sacks’ question has a negative answer.We will end the thesis with a list of open questions related to Martin’s conjecture, which we hope will stimulate further research.Abstract prepared by Patrick Lutz.E-mail: [email protected]

2009 ◽  
Vol 74 (4) ◽  
pp. 1264-1272 ◽  
Author(s):  
David Diamondstone

AbstractA classical theorem in computability is that every promptly simple set can be cupped in the Turing degrees to some complete set by a low c.e. set. A related question due to A. Nies is whether every promptly simple set can be cupped by a superlow c.e. set, i.e. one whose Turing jump is truth-table reducible to the halting problem ∅′. A negative answer to this question is provided by giving an explicit construction of a promptly simple set that is not superlow cuppable. This problem relates to effective randomness and various lowness notions.


1991 ◽  
Vol 56 (1) ◽  
pp. 195-212 ◽  
Author(s):  
Seema Ahmad

Lachlan [5] has shown that it is not possible to embed the diamond lattice in the r.e. Turing degrees while preserving least and greatest elements; that is, there do not exist incomparable r.e. Turing degrees a and b such that a ∧ b = 0 and a ∨ b = 0′. Cooper [3] has compared the r.e. Turing degrees to the enumeration degrees below 0e′ and has asked if the two structures are elementarily equivalent.In this paper we show that such an embedding is possible in the Σ2enumeration degrees, which implies a negative answer to Cooper's question.Theorem. There are low enumeration degreesaandbsuch thata ∧ b = 0eanda ∨ b = 0e′.Lower case italic letters denote elements of ω while upper case italic letters denote subsets of ω. D, E and F are reserved for finite sets, and K for ′. If D = {x0, x1, …, xn} then the canonical index of D is , and the canonical index of is ∅. Dx denotes the set with canonical index x. {Wi}i∈ω is any fixed standard listing of the r.e. sets, and <·, ·> is any fixed recursive bijection from ω × ω to ω.Intuitively, A is enumeration reducible to B if there is an effective algorithm for producing an enumeration of A from any enumeration of B. There is a natural one-to-one correspondence between all such algorithms and the r.e. sets.


2021 ◽  
Vol 27 (2) ◽  
pp. 220-220
Author(s):  
Justin Miller

AbstractThere are many computational problems which are generally “easy” to solve but have certain rare examples which are much more difficult to solve. One approach to studying these problems is to ignore the difficult edge cases. Asymptotic computability is one of the formal tools that uses this approach to study these problems. Asymptotically computable sets can be thought of as almost computable sets, however every set is computationally equivalent to an almost computable set. Intrinsic density was introduced as a way to get around this unsettling fact, and which will be our main focus.Of particular interest for the first half of this dissertation are the intrinsically small sets, the sets of intrinsic density $0$ . While the bulk of the existing work concerning intrinsic density was focused on these sets, there were still many questions left unanswered. The first half of this dissertation answers some of these questions. We proved some useful closure properties for the intrinsically small sets and applied them to prove separations for the intrinsic variants of asymptotic computability. We also completely separated hyperimmunity and intrinsic smallness in the Turing degrees and resolved some open questions regarding the relativization of intrinsic density.For the second half of this dissertation, we turned our attention to the study of intermediate intrinsic density. We developed a calculus using noncomputable coding operations to construct examples of sets with intermediate intrinsic density. For almost all $r\in (0,1)$ , this construction yielded the first known example of a set with intrinsic density r which cannot compute a set random with respect to the r-Bernoulli measure. Motivated by the fact that intrinsic density coincides with the notion of injection stochasticity, we applied these techniques to study the structure of the more well-known notion of MWC-stochasticity.Abstract prepared by Justin Miller.E-mail: [email protected]: https://curate.nd.edu/show/6t053f4938w


1974 ◽  
Vol 39 (1) ◽  
pp. 139-150 ◽  
Author(s):  
Neil D. Jones ◽  
Alan L. Selman

H. Scholz [11] defined the spectrum of a formula φ of first-order logic with equality to be the set of all natural numbers n for which φ has a model of cardinality n. He then asked for a characterization of spectra. Only partial progress has been made. Computational aspects of this problem have been worked on by Gunter Asser [1], A. Mostowski [9], and J. H. Bennett [2]. It is known that spectra include the Grzegorczyk class and are properly included in . However, no progress has been made toward establishing whether spectra properly include , or whether spectra are closed under complementation.A possible connection with automata theory arises from the fact that contains just those sets which are accepted by deterministic linear-bounded Turing machines (Ritchie [10]). Another resemblance lies in the fact that the same two problems (closure under complement, and proper inclusion of ) have remained open for the class of context sensitive languages for several years.In this paper we show that these similarities are not accidental—that spectra and context sensitive languages are closely related, and that their open questions are merely special cases of a family of open questions which relate to the difference (if any) between deterministic and nondeterministic time or space bounded Turing machines.In particular we show that spectra are just those sets which are acceptable by nondeterministic Turing machines in time 2cx, where c is constant and x is the length of the input. Combining this result with results of Bennett [2], Ritchie [10], Kuroda [7], and Cook [3], we obtain the “hierarchy” of classes of sets shown in Figure 1. It is of interest to note that in all of these cases the amount of unrestricted read/write memory appears to be too small to allow diagonalization within the larger classes.


1981 ◽  
Vol 46 (4) ◽  
pp. 753-760 ◽  
Author(s):  
Harold T. Hodes

AbstractWhere AR is the set of arithmetic Turing degrees, 0(ω) is the least member of {a(2) ∣ a is an upper bound on AR}. This situation is quite different if we examine HYP, the set of hyperarithmetic degrees. We shall prove (Corollary 1) that there is an a, an upper bound on HYP, whose hyperjump is the degree of Kleene's . This paper generalizes this example, using an iteration of the jump operation into the transfinite which is based on results of Jensen and is detailed in [3] and [4]. In § 1 we review the basic definitions from [3] which are needed to state the general results.


2014 ◽  
Vol 79 (3) ◽  
pp. 676-692 ◽  
Author(s):  
GEORGE BARMPALIAS ◽  
ROD G. DOWNEY

AbstractTheK-trivial sets form an ideal in the Turing degrees, which is generated by its computably enumerable (c.e.) members and has an exact pair below the degree of the halting problem. The question of whether it has an exact pair in the c.e. degrees was first raised in [22, Question 4.2] and later in [25, Problem 5.5.8].We give a negative answer to this question. In fact, we show the following stronger statement in the c.e. degrees. There exists aK-trivial degreedsuch that for all degreesa, bwhich are notK-trivial anda > d, b > dthere exists a degreevwhich is notK-trivial anda > v, b > v. This work sheds light to the question of the definability of theK-trivial degrees in the c.e. degrees.


2016 ◽  
Vol 81 (3) ◽  
pp. 1028-1046 ◽  
Author(s):  
DENIS R. HIRSCHFELDT ◽  
CARL G. JOCKUSCH ◽  
RUTGER KUYPER ◽  
PAUL E. SCHUPP

AbstractA coarse description of a set A ⊆ ω is a set D ⊆ ω such that the symmetric difference of A and D has asymptotic density 0. We study the extent to which noncomputable information can be effectively recovered from all coarse descriptions of a given set A, especially when A is effectively random in some sense. We show that if A is 1-random and B is computable from every coarse description D of A, then B is K-trivial, which implies that if A is in fact weakly 2-random then B is computable. Our main tool is a kind of compactness theorem for cone-avoiding descriptions, which also allows us to prove the same result for 1-genericity in place of weak 2-randomness. In the other direction, we show that if $A \le _{{\rm{T}}} \emptyset {\rm{'}}$ is a 1-random set, then there is a noncomputable c.e. set computable from every coarse description of A, but that not all K-trivial sets are computable from every coarse description of some 1-random set. We study both uniform and nonuniform notions of coarse reducibility. A set Y is uniformly coarsely reducible to X if there is a Turing functional Φ such that if D is a coarse description of X, then ΦD is a coarse description of Y. A set B is nonuniformly coarsely reducible to A if every coarse description of A computes a coarse description of B. We show that a certain natural embedding of the Turing degrees into the coarse degrees (both uniform and nonuniform) is not surjective. We also show that if two sets are mutually weakly 3-random, then their coarse degrees form a minimal pair, in both the uniform and nonuniform cases, but that the same is not true of every pair of relatively 2-random sets, at least in the nonuniform coarse degrees.


1987 ◽  
Vol 52 (1) ◽  
pp. 208-213
Author(s):  
Robert S. Lubarsky

Much of recursion theory centers on the structures of different kinds of degrees. Classically there are the Turing degrees and r. e. Turing degrees. More recently, people have studied α-degrees for α an ordinal, and degrees over E-closed sets and admissible sets. In most contexts, deg(0) is the bottom degree and there is a jump operator' such that d' is the largest degree r. e. in d and d' > d. Both the degrees and the r. e. degrees usually have a rich structure, including a relativization to the cone above a given degree.A natural exception to this pattern was discovered by S. Friedman [F], who showed that for certain admissible ordinals β the β-degrees ≥ 0′ are well-ordered, with successor provided by the jump.For r. e. degrees, natural counterexamples are harder to come by. This is because the constructions are priority arguments, which require only mild restrictions on the ground model. For instance, if an admissible set has a well-behaved pair of recursive well-orderings then the priority construction of an intermediate r. e. degree (i.e., 0 < d < 0′) goes through [S]. It is of interest to see just what priority proofs need by building (necessarily pathological) admissible sets with few r. e. degrees.Harrington [C] provides an admissible set with two r. e. degrees, via forcing. A limitation of his example is that it needs ω1 (more accurately, a local version thereof) as a parameter. In this paper, we find locally countable admissible sets, some with three r. e. degrees and some with four.


2018 ◽  
Vol 83 (1) ◽  
pp. 392-394
Author(s):  
LINDA BROWN WESTRICK

AbstractLet ${\cal S}$ be a Scott set, or even an ω-model of WWKL. Then for each A ε S, either there is X ε S that is weakly 2-random relative to A, or there is X ε S that is 1-generic relative to A. It follows that if A1,…,An ε S are noncomputable, there is X ε S such that each Ai is Turing incomparable with X, answering a question of Kučera and Slaman. More generally, any ∀∃ sentence in the language of partial orders that holds in ${\cal D}$ also holds in ${{\cal D}^{\cal S}}$, where ${{\cal D}^{\cal S}}$ is the partial order of Turing degrees of elements of ${\cal S}$.


1970 ◽  
Vol 2 (1) ◽  
pp. 39-44 ◽  
Author(s):  
M.S. Brooks ◽  
L.G. Kovács ◽  
M.F. Newman

It is shown that, if U is a subvariety of the join of a nilpotent variety and a metabelian variety and if V is a variety with a finite basis for its laws, then UV also has a finite basis for its laws. The special cases U nilpotent and U metabelian have been established by Higman (1959) and Ivanjuta (1969) respectively. The proof here, which is independent of Ivanjuta's, depends on a rather general sufficient condition for a product variety to have a finite basis for its laws.


Sign in / Sign up

Export Citation Format

Share Document