differential scanning calorimetry analysis
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 1)

H-INDEX

13
(FIVE YEARS 0)





2020 ◽  
Vol 322 ◽  
pp. 01027
Author(s):  
Zbigniew Rusin ◽  
Piotr Stępień ◽  
Karol Skowera

In the paper a low-temperature thermoporometry using differential scanning calorimetry (DSC) was employed for analyse of influence of siliceous fly ash (FA) on pore structure of non-air-entrained mortars (pore size, connectivity). A method of interpreting a heat flux differential scanning calorimetry records in pore structure was used for this purpose. The results demonstrated that the: (i) fly ash mortars have virtually no pores inaccessible to water, unlike the mortars with plain Portland cement in which inaccessible pores constitute a significant fraction, growing with the increase in w/b; (ii) with a decrease in w/b the ink-bottle volume decreases. Fraction of this pore type is relatively larger in fly ash mortars; (iii) Siliceous fly ash increased the volume of pores greater than 8 nm, in particular in the group with radii larger than 20 nm at all w/b ratios.



Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 803 ◽  
Author(s):  
Feng Bao ◽  
Fengfeng Zhang ◽  
Chenghao Wang ◽  
Yuanyuan Song ◽  
Nan Li ◽  
...  

The application of poly(phthalazinone ether ketone)s (PPEKs) resin containing phthalazinone moiety is limited, due to its poor thermoforming processability. To investigate the effects of the phthalazinone’s side-group on the thermal stability and processability of the resin, a series of PPEKs resins with different side-group (–H/–CH3/–Ph) were prepared by nucleophilic aromatic substitution polymerization. The properties of the obtained resins were investigated by differential scanning calorimetry analysis (DSC), thermogravimetric analysis (TGA), dynamic thermomechanical analysis (DMA), and rheogoniometer. The results show that the introduction of methyl or phenyl into the PPEKs resin, significantly reduced the melting viscosity of the resin, but resulted in a slight decrease in the thermal stability of it. This might be due to the presence of methyl or phenyl, which enhanced the free volume of the molecule and reduced the entanglement between the chains; the results of the computer simulation confirmed it. Moreover, the resin films displayed excellent tensile strength with the introduction of methyl or phenyl. In a word, a novel poly(phthalazinone ether ketone)s resin with thermal resistance, easy processing and excellent mechanical properties could be obtained by introducing appropriate bulk-rigid side-groups into the phthalazinone moiety.



2019 ◽  
Vol 7 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Benjamin Milkereit ◽  
Lydia Burgschat ◽  
Richard H. Kemsies ◽  
Armin Springer ◽  
Christoph Schick ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document