guanidine thiocyanate
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 9)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
pp. 114262
Author(s):  
Michelle J.E. Honeywood ◽  
Stacey Jeffries-Miles ◽  
Kimberly Wong ◽  
Chelsea Harrington ◽  
Cara C. Burns ◽  
...  

2021 ◽  
Vol 334 ◽  
pp. 129685
Author(s):  
Jigna R. Bhamore ◽  
Anam Rana Gul ◽  
Suresh Kumar Kailasa ◽  
Kyoung-Woong Kim ◽  
Jin Soo Lee ◽  
...  

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6440
Author(s):  
Xiaoxiao Sun ◽  
Meiling Wang ◽  
Lin Guo ◽  
Changlong Shu ◽  
Jie Zhang ◽  
...  

The interactions between rhizosphere microorganisms and plants are important for the health and development of crops. Analysis of plant rhizosphere bacterial compositions, particularly of those with resistance to biotic/abiotic stresses, may improve their applications in sustainable agriculture. Large-scale rhizosphere samplings in the field are usually required; however, such samples, cannot be immediately frozen. We found that the storage of samples at room temperature for 2 days leads to a considerable reduction in the operational taxonomic unit (OTU) number and the indices of bacterial alpha-diversity of rhizosphere communities. In this study, in order to overcome these problems, we established a method using guanidine thiocyanate (GTC) solution for the preservation of rhizosphere samples after their collection. This method allowed the maintenance of the samples for at least 1 day at room temperature prior to their cryopreservation and was shown to be compatible with conventional DNA isolation protocols. Illumina sequencing of V3 and V4 hypervariable regions of the 16S rRNA gene was used to assess the feasibility and reliability of this method, and no significant differences were observed in the number of OTUs and in the Chao and Shannon indices between samples stored at −70 °C and those stored in GTC solution. Moreover, the representation of Pseudomonas spp. in samples stored in GTC solution was not significantly different from that in samples stored at −70 °C, as determined by real-time quantitative polymerase chain reaction (p > 0.05). Both types of samples were shown to cluster together according to principal coordinate analysis. Furthermore, GTC solution did not affect the bacterial taxon profiles at different storage periods compared with those observed when storing the samples below −70 °C. Even incubation of thawed samples (frozen at −70 °C) for 15 min at room temperature induced minor changes in the bacterial composition. Taken together, our results demonstrated that GTC solution may provide a reliable alternative for the preservation of rhizosphere samples in the field.


2017 ◽  
Vol 38 (4) ◽  
pp. 2201 ◽  
Author(s):  
Gabrielle Silveira de Campos ◽  
Ricardo Antônio Ayub ◽  
Rafael Mazer Etto ◽  
Carolina Weigert Galvão ◽  
Marília Aparecida Stroka ◽  
...  

Melon, a member of the family Cucurbitaceae, is the fourth most important fruit in the world market and, on a volume basis, is Brazil’s main fresh fruit export. Many molecular techniques used to understand the maturation of these fruits require high concentrations of highly purified RNA. However, melons are rich in polyphenolic compounds and polysaccharides, which interfere with RNA extraction. This study aimed to determine the most appropriate method for total RNA extraction from melon fruits. Six extraction buffers were tested: T1) guanidine thiocyanate/phenol/chloroform; T2) sodium azide/?-mercaptoethanol; T3) phenol/guanidine thiocyanate; T4) CTAB/PVP/?-mercaptoethanol; T5) SDS/sodium perchlorate/PVP/?-mercaptoethanol, and T6) sarkosyl/PVP/guanidine thiocyanate, using the AxyPrepTM Multisource Total RNA Miniprep Kit. The best method for extracting RNA from both mature and green fruit was based on the SDS/PVP/?-mercaptoethanol buffer, because it rapidly generated a high quality and quantity of material. In general, higher amounts of RNA were obtained from green than mature fruits, probably due to the lower concentration of polysaccharides and water. The purified material can be used as a template in molecular techniques, such as microarrays, RT-PCR, and in the construction of cDNA and RNA-seq data.


Sign in / Sign up

Export Citation Format

Share Document