coupled gating
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 6)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Miguel Martín‐Aragón Baudel ◽  
Victor Flores‐Tamez ◽  
Gopyreddy Reddy ◽  
Junyoung Hong ◽  
Abby Burns ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yang Zheng ◽  
Xiaoping Wan ◽  
Dandan Yang ◽  
Angelina Ramirez-Navarro ◽  
Haiyan Liu ◽  
...  

Nav1.5, encoded by the gene SCN5A, is the predominant voltage-gated sodium channel expressed in the heart. It initiates the cardiac action potential and thus is crucial for normal heart rhythm and function. Dysfunctions in Nav1.5 have been involved in multiple congenital or acquired cardiac pathological conditions such as Brugada syndrome (BrS), Long QT Syndrome Type 3, and heart failure (HF), all of which can lead to sudden cardiac death (SCD) – one of the leading causes of death worldwide. Our lab has previously reported that Nav1.5 forms dimer channels with coupled gating. We also found that Nav1.5 BrS mutants can exert a dominant-negative (DN) effect and impair the function of wildtype (WT) channels through coupled-gating with the WT. It was previously reported that reduction in cardiac sodium currents (INa), observed in HF, could be due to the increased expression of an SCN5A splice variant – E28D, which results in a truncated sodium channel (Nav1.5-G1642X). In this study, we hypothesized that this SCN5A splice variant leads to INa reduction in HF through biophysical coupling with the WT. We showed that Nav1.5-G1642X is a non-functional channel but can interact with the WT, resulting in a DN effect on the WT channel. We found that both WT and the truncated channel Nav1.5-G1642X traffic at the cell surface, suggesting biophysical coupling. Indeed, we found that the DN effect can be abolished by difopein, an inhibitor of the biophysical coupling. Interestingly, the sodium channel polymorphism H558R, which has beneficial effect in HF patients, could also block the DN effect. In summary, the HF-associated splice variant Nav1.5-G1642X suppresses sodium currents in heart failure patients through a mechanism involving coupled-gating with the wildtype sodium channel.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 265
Author(s):  
Charles W. Carter ◽  
Peter R. Wills

Bioenergetics, genetic coding, and catalysis are all difficult to imagine emerging without pre-existing historical context. That context is often posed as a “Chicken and Egg” problem; its resolution is concisely described by de Grasse Tyson: “The egg was laid by a bird that was not a chicken”. The concision and generality of that answer furnish no details—only an appropriate framework from which to examine detailed paradigms that might illuminate paradoxes underlying these three life-defining biomolecular processes. We examine experimental aspects here of five examples that all conform to the same paradigm. In each example, a paradox is resolved by coupling “if, and only if” conditions for reciprocal transitions between levels, such that the consequent of the first test is the antecedent for the second. Each condition thus restricts fluxes through, or “gates” the other. Reciprocally-coupled gating, in which two gated processes constrain one another, is self-referential, hence maps onto the formal structure of “strange loops”. That mapping uncovers two different kinds of forces that may help unite the axioms underlying three phenomena that distinguish biology from chemistry. As a physical analog for Gödel’s logic, biomolecular strange-loops provide a natural metaphor around which to organize a large body of experimental data, linking biology to information, free energy, and the second law of thermodynamics.


Author(s):  
Charles W. Carter, Jr ◽  
Peter R Wills

Bioenergetics, genetic coding, and catalysis are all difficult to imagine emerging without pre-existing historical context. That context is often posed as a “Chicken and Egg” problem; its resolution is concisely described by de Grasse Tyson: “the egg was laid by a bird that was not a chicken”. The concision and generality of that answer furnish no details—only an appropriate framework from which to examine detailed paradigms that might illuminate paradoxes underlying these three life-defining biomolecular processes. We examine experimental aspects here of five examples that all conform to the same paradigm. The paradox in each example is resolved by coupling if, and only if, conditions for two related transitions between levels. One drives, and each restricts fluxes through, or “gates” the other. That reciprocally-coupled gating, in which two gated processes constrain one another, maps onto the formal structure of “strange loops”. That mapping may help unite the axiomatic foundations of genetics, bioenergetics, and catalysis. As a physical analog for Gödel’s logic, biomolecular strange-loops provide a natural metaphor around which to organize these data, linking biology to the physics of information, free energy, and the second law of thermodynamics.


2020 ◽  
Vol 118 (3) ◽  
pp. 577a-578a
Author(s):  
Yang Zheng ◽  
Haiyan Liu ◽  
Xiaoping Wan ◽  
Isabelle Deschenes

2018 ◽  
Vol 430 (24) ◽  
pp. 5050-5065 ◽  
Author(s):  
Huan Rui ◽  
Avisek Das ◽  
Robert Nakamoto ◽  
Benoît Roux

2018 ◽  
Vol 315 (5) ◽  
pp. H1250-H1257 ◽  
Author(s):  
Jérôme Clatot ◽  
Yang Zheng ◽  
Aurore Girardeau ◽  
Haiyan Liu ◽  
Kenneth R. Laurita ◽  
...  

Mutations in voltage-gated Na+ channels have been linked to several channelopathies leading to a wide variety of diseases including cardiac arrhythmias, epilepsy, and myotonia. We have previously demonstrated that voltage-gated Na+ channel (Nav)1.5 trafficking-deficient mutant channels could lead to a dominant negative effect by impairing trafficking of the wild-type (WT) channel. We also reported that voltage-gated Na+ channels associate as dimers with coupled gating properties. Here, we hypothesized that the dominant negative effect of mutant Na+ channels could also occur through coupled gating. This was tested using cell surface biotinylation and single channel recordings to measure the gating probability and coupled gating of the dimers. As previously reported, coexpression of Nav1.5-L325R with WT channels led to a dominant negative effect, as reflected by a 75% reduction in current density. Surprisingly, cell surface biotinylation showed that Nav1.5-L325R mutant is capable of trafficking, with 40% of Nav1.5-L325R reaching the cell surface when expressed alone. Importantly, even though a dominant negative effect on the Na+ current is observed when WT and Nav1.5-L325R are expressed together, the total Nav channel cell surface expression was not significantly altered compared with WT channels alone. Thus, the trafficking deficiency could not explain the 75% decrease in inward Na+ current. Interestingly, single channel recordings showed that Nav1.5-L325R exerted a dominant negative effect on the WT channel at the gating level. Both coupled gating and gating probability of WT:L325R dimers were drastically impaired. We conclude that dominant negative suppression exerted by Nav1.5 mutants can also be caused by impairing the WT gating probability, a mechanism resulting from the dimerization and coupled gating of voltage-gated Na+ channel α-subunits. NEW & NOTEWORTHY The presence of dominant negative mutations in the Na+ channel gene leading to Brugada syndrome was supported by our recent findings that Na+ channel α-subunits form dimers. Up until now, the dominant negative effect was thought to be caused by the interaction of the wild-type Na+ channel with trafficking-deficient mutant channels. However, the present study demonstrates that coupled gating of voltage-gated Na+ channels can also be responsible for the dominant negative effect leading to arrhythmias.


2017 ◽  
Vol 112 (3) ◽  
pp. 104a
Author(s):  
Jerome Clatot ◽  
Aurore Girardeau ◽  
Celine Marionneau ◽  
Isabelle Deschenes

Sign in / Sign up

Export Citation Format

Share Document