rhinopithecus roxellana
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 25)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaochen Wang ◽  
Ziming Wang ◽  
Huijuan Pan ◽  
Jiwei Qi ◽  
Dayong Li ◽  
...  

Ex situ (captivity in zoos) is regarded as an important form of conservation for endangered animals. Many studies have compared differences in the gut microbiome between captive and wild animals, but few have explained those differences at the functional level due to the limited amount of 16S rRNA data. Here, we compared the gut microbiome of captive and wild Rhinopithecus roxellana, whose high degree of dietary specificity makes it a good subject to observe the effects of the captive environment on their gut microbiome, by performing a metagenome-wide association study (MWAS). The Chao1 index was significantly higher in the captive R. roxellana cohort than in the wild cohort, and the Shannon index of captive R. roxellana was higher than that of the wild cohort but the difference was not significant. A significantly increased ratio of Prevotella/Bacteroides, which revealed an increased ability to digest simple carbohydrates, was found in the captive cohort. A significant decrease in the abundance of Firmicutes and enrichment of genes related to the pentose phosphate pathway were noted in the captive cohort, indicating a decreased ability of captive monkeys to digest fiber. Additionally, genes required for glutamate biosynthesis were also significantly more abundant in the captive cohort than in the wild cohort. These changes in the gut microbiome correspond to changes in the composition of the diet in captive animals, which has more simple carbohydrates and less crude fiber and protein than the diet of the wild animals. In addition, more unique bacteria in captive R. roxellana were involved in antibiotic resistance (Acinetobacter) and diarrhea (Desulfovibrio piger), and in the prevention of diarrhea (Phascolarctobacterium succinatutens) caused by Clostridioides difficile. Accordingly, our data reveal the cause-and-effect relationships between changes in the exact dietary composition and changes in the gut microbiome on both the structural and functional levels by comparing of captive and wild R. roxellana.


Author(s):  
Juanjuan Wang ◽  
Xin Liu ◽  
Jing Yang ◽  
Hanxing Guo ◽  
Jingjing Li ◽  
...  

Author(s):  
Lan Jiang ◽  
Qiao Yang ◽  
Jianqiu Yu ◽  
Xuanzhen Liu ◽  
Yansen Cai ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Lijuan Yao ◽  
Xiang Li ◽  
Zutao Zhou ◽  
Deshi Shi ◽  
Zili Li ◽  
...  

The gut microbiota represents a source of genetic and metabolic diversity of a complex polymicrobial ecosystem within its host. To investigate age-based variations of the gut microbiota among Shennongjia golden snub-nosed monkeys (Rhinopithecus roxellana hubeiensis), we characterized the microbial species in fecal samples from 18 Shennongjia golden snub-nosed monkeys evenly pooled into 3 aged groups (Group 1, 1-3 years; Group 2, 5-8 years; Group 3, above 12 years) in Shennongjia, Hubei Province, China. Genomic DNA was extracted from fecal samples, and the 16S rRNA gene V4 region was sequenced using the Illumina high-throughput MiSeq platform PE250. A total of 28 microbial phyla were identified in the gut microbiome of these monkeys with the ten most abundant phyla (i.e., Firmicutes, Bacteroidetes, Verrucomicrobia, Spirochaetes, Tenericutes, Proteobacteria, Planctomycetes, Fibrobacteres, Cyanobacteria, and Euryarchaeota). A total of 1,469 (of 16 phyla and 166 genera), 1,381 (of 16 phyla and 157 genera), and 1,931 (of 19 phyla and 190 genera) operational taxonomic units (OTUs) were revealed in Groups 1, 2, and 3, respectively, with Group 3 containing the most diverse groups of OTUs as revealed by the species relative abundance clustering analysis. These results suggest that the gut microbiota in these monkeys maintain a dynamic status, starting from the early developmental stages of life with the species relative abundance increasing with age. This is the first study to comprehensively characterize the gut microbiota and provide valuable information for monitoring the health and nutritional needs of this endangered primate at different ages.


Primates ◽  
2021 ◽  
Vol 62 (3) ◽  
pp. 507-519
Author(s):  
Dionisios Youlatos ◽  
Michael C. Granatosky ◽  
Roula Al Belbeisi ◽  
Gang He ◽  
Songtao Guo ◽  
...  

2021 ◽  
Vol 26 (1-2) ◽  
pp. 201-212
Author(s):  
Weiwei Fu ◽  
Chengliang Wang ◽  
Yi Ren ◽  
Yan Wang ◽  
Mingwen Qiao ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Yuli Li ◽  
Kang Huang ◽  
Shiyi Tang ◽  
Li Feng ◽  
Jia Yang ◽  
...  

The Qinling mountainous region is one of the world's biodiversity hotspots and provides refuges for many endangered endemic animals. The golden snub-nosed monkeys (Rhinopithecus roxellana) are considered as a flagship species in this area. Here, we depicted the genetic structure and evolutionary history via microsatellite markers and combination with the ecological niche models (ENMs) to elucidate the intraspecific divergent and the impacts of the population demography on our focal species. Our results revealed three distinct subpopulations of R. roxellana and also uncovered asymmetric historical and symmetric contemporary gene flow that existed. Our evolutionary dynamics analyses based on diyabc suggested that the intraspecific divergence accompanied with effective population sizes changes. The ENM result implied that the distribution range of this species experienced expansion during the last glacial maximum (LGM). Our results highlighted that geological factors could contribute to the high genetic differentiation within the R. roxellana in the Qinling Mountains. We also provided a new insight into conservation management plans with endangered species in this region.


Sign in / Sign up

Export Citation Format

Share Document