electrochemical double layer capacitors
Recently Published Documents


TOTAL DOCUMENTS

223
(FIVE YEARS 43)

H-INDEX

43
(FIVE YEARS 6)

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2899
Author(s):  
Joseph Paul Baboo ◽  
Shumaila Babar ◽  
Dhaval Kale ◽  
Constantina Lekakou ◽  
Giuliano M. Laudone

Graphene electrodes are investigated for electrochemical double layer capacitors (EDLCs) with lithium ion electrolyte, the focus being the effect of the pore size distribution (PSD) of electrode with respect to the solvated and desolvated electrolyte ions. Two graphene electrode coatings are examined: a low specific surface area (SSA) xGNP-750 coating and a high SSA coating based on a-MWGO (activated microwave expanded graphene oxide). The study comprises an experimental and a computer modeling part. The experimental part includes fabrication, material characterization and electrochemical testing of an EDLC with xGNP-750 coating electrodes and electrolyte 1M LiPF6 in EC:DMC. The computational part includes simulations of the galvanostatic charge-discharge of each EDLC type, based on a continuum ion transport model taking into account the PSD of electrodes, as well as molecular modeling to determine the parameters of the solvated and desolvated electrolyte ions and their adsorption energies with each type of electrode pore surface material. Predictions, in agreement with the experimental data, yield a specific electrode capacitance of 110 F g−1 for xGNP-750 coating electrodes in electrolyte 1M LiPF6 in EC:DMC, which is three times higher than that of the high SSA a-MWGO coating electrodes in the same lithium ion electrolyte.


2021 ◽  
pp. 53-77
Author(s):  
Aleksandr E. Kolosov ◽  
Volodymyr Y. Izotov ◽  
Elena P. Kolosova ◽  
Volodymyr V. Vanin ◽  
Anish Khan

2021 ◽  
Vol 2 (3) ◽  
pp. 324-343
Author(s):  
Viola Hoffmann ◽  
Catalina Rodriguez Correa ◽  
Saskia Sachs ◽  
Andrea del Pilar Sandoval-Rojas ◽  
Mo Qiao ◽  
...  

Bio-based activated carbons with very high specific surface area of >3.000 m² g−1 (based on CO2 adsorption isotherms) and a high proportion of micropores (87% of total SSA) are produced by corncobs via pyrolysis and chemical activation with KOH. The activated carbon is further doped with different proportions of the highly pseudocapacitive transition metal oxide RuO2 to obtain enhanced electrochemical properties and tune the materials for the application in electrochemical double-layer capacitors (EDLC) (supercapacitors). The activated carbon and composites are extensively studied regarding their physico-chemical and electrochemical properties. The results show that the composite containing 40 wt.% RuO2 has an electric conductivity of 408 S m−1 and a specific capacitance of 360 Fg−1. SEM-EDX, XPS, and XRD analysis confirm the homogenous distribution of partly crystalline RuO2 particles on the carbon surface, which leads to a biobased composite material with enhanced electrochemical properties.


2021 ◽  
Vol 4 (8) ◽  
pp. 1199-1200
Author(s):  
Rafael Vicentini ◽  
João Pedro Aguiar ◽  
Renato Beraldo ◽  
Raissa Venâncio ◽  
Fernando Rufino ◽  
...  

2021 ◽  
Author(s):  
Rafael Vicentini ◽  
João Pedro Aguiar ◽  
Renato Beraldo ◽  
Raissa Venâncio ◽  
Fernando Rufino ◽  
...  

2021 ◽  
Author(s):  
Rafael Vicentini ◽  
João Pedro Aguiar ◽  
Renato Beraldo ◽  
Raissa Venâncio ◽  
Fernando Rufino ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1135
Author(s):  
Olga A. Gurova ◽  
Vitalii I. Sysoev ◽  
Egor V. Lobiak ◽  
Anna A. Makarova ◽  
Igor P. Asanov ◽  
...  

Robust electrode materials without the addition of binders allow increasing efficiency of electrical storage devices. We demonstrate the fabrication of binder-free electrodes from modified single-walled carbon nanotubes (SWCNTs) for electrochemical double-layer capacitors (EDLCs). Modification of SWCNTs included a sonication in 1,2-dichlorobenzene and/or fluorination with gaseous BrF3 at room temperature. The sonication caused the shortening of SWCNTs and the splitting of their bundles. As a result, the film prepared from such SWCNTs had a higher density and attached a larger amount of fluorine as compared to the film from non-sonicated SWCNTs. In EDLCs with 1M H2SO4 electrolyte, the fluorinated films were gradually defluorinated, which lead to an increase of the specific capacitance by 2.5–4 times in comparison with the initial values. Although the highest gravimetric capacitance (29 F g−1 at 100 mV s−1) was observed for the binder-free film from non-modified SWCNT, the fluorinated film from the sonicated SWCNTs had an enhanced volumetric capacitance (44 F cm−3 at 100 mV s−1). Initial SWCNT films and defluorinated films showed stable work in EDLCs during several thousand cycles.


Sign in / Sign up

Export Citation Format

Share Document